ZHANG Minghua, XIAO Ming, OUYANG Ling, et al. Optimization design and test of seed protecting structure of combined type-hole metering device[J]. Journal of South China Agricultural University, 2021, 42(4): 99-105. DOI: 10.7671/j.issn.1001-411X.202106022
    Citation: ZHANG Minghua, XIAO Ming, OUYANG Ling, et al. Optimization design and test of seed protecting structure of combined type-hole metering device[J]. Journal of South China Agricultural University, 2021, 42(4): 99-105. DOI: 10.7671/j.issn.1001-411X.202106022

    Optimization design and test of seed protecting structure of combined type-hole metering device

    More Information
    • Received Date: March 19, 2021
    • Available Online: May 17, 2023
    • Objective 

      In order to solve the problems that the seed guard belt is easy to deviate and slip in application of the combined type-hole metering device of rice precision hole seeder, which leads to serious wear of the seed guard belt and high rate of seed damage.

      Method 

      The synchronization principle of seed protection mechanism was analyzed, and the shaft sleeve structure(A) and the hardness of seed guard belt(B) were optimized. A two-factor experiment with different bushing structures (A1 as nylon bushing structure, A2 as needle bearing & copper bushing structure) and hardness of seed guard belt (B 1, B2, B3, B4 and B5 represented the hardness of 40, 45, 50, 55 and 60 HA, respectively) was designed using rice variety ‘Peizataifeng’ and ‘Xiushui134’ seeds as test materials.

      Result 

      The experimental groups of A and B had the highly significant effect on the damage rate of rice seeds (P < 0.01), and there was a significant interaction between A and B ( P < 0.05). A 2B2 and A2B3 had the least effect on seed damage rate. There was a highly significant difference between A1 and A2, and seed damage rate of A2 was significantly lower than that of A1, indicating that A2 was better than A1. There was no significant difference between B2 and B3, but B2 and B3 had significant difference with other groups. The experimental group A had a significant effect on hill diameter, B had no significant effect on hill diameter, and the groups of A2B2, A2B3 and A2B4 had the less effect on hill diameter. There was a significant difference between A1 and A2, and A2 was significantly better than A1.The results of test showed that the wear of seed guard belt of A2B3, A2B4 and A2B5 were less after working for 100 hour. The grouo A2B3 was the optimal with the wearing volume of 72.6×10−3 mm3 and seed injury rate of 0.04%, and the hole forming ability and sowing effect were both the best.

      Conclusion 

      The optimized design of needle bearing & copper bushing shaft sleeve structure is reasonable. It can significantly reduce the friction coefficient between sleeve and shaft, is more resistant to high temperature and wear resistance, effectively improves the synchronization of seed guard belt, and significantly improves the reliability and sowing quality of seed platter.

    • [1]
      罗锡文, 欧洲, 蒋恩臣, 等. 抛掷成穴式水稻精量直播排种器试验[J]. 农业机械学报, 2005, 36(9): 37-40. doi: 10.3969/j.issn.1000-1298.2005.09.010
      [2]
      CHOSA T, FURUHATA M, OMINE M, et al. Development of air-assisted strip seeding for direct seeding in flooded paddy fields: Seeding machine and effect of air assistance[J]. Farm Work Research: Journal of Farm Work Society of Japan, 2009, 141: 211-218.
      [3]
      FURUHATA M, CHOSA T, SHIOYA Y, et al. Developing direct seeding cultivation using an air-assisted strip seeder[J]. Japan Agricultural Research Quarterly, 2015, 49(3): 227-233. doi: 10.6090/jarq.49.227
      [4]
      罗锡文, 刘涛, 蒋恩臣, 等. 水稻精量穴直播排种轮的设计与试验[J]. 农业工程学报, 2007, 23(3): 108-112. doi: 10.3321/j.issn:1002-6819.2007.03.022
      [5]
      张明华, 罗锡文, 王在满, 等. 水稻直播机组合型孔排种器设计与试验[J]. 农业机械学报, 2016, 47(9): 29-36.
      [6]
      张明华, 王在满, 罗锡文, 等. 组合型孔排种器双充种室结构对充种性能的影响[J]. 农业工程学报, 2018, 34(12): 8-15. doi: 10.11975/j.issn.1002-6819.2018.12.002
      [7]
      张明华. 水稻精量穴直播机的优化设计与试验[D]. 广州: 华南农业大学, 2017.
      [8]
      罗锡文, 王在满, 蒋恩臣, 等. 型孔轮式排种器弹性随动护种带装置设计[J]. 农业机械学报, 2008, 39(12): 60-63.
      [9]
      王冲, 宋建农, 王继承, 等. 机械式排种器同步柔性皮带护种器的设计[J]. 农业工程学报, 2009, 25(10): 107-111. doi: 10.3969/j.issn.1002-6819.2009.10.019
      [10]
      于建群, 马成林, 张格. 组合内窝孔精密排种器护种和投种过程分析[J]. 农业机械学报, 2001, 32(4): 28-30. doi: 10.3969/j.issn.1000-1298.2001.04.009
      [11]
      中国农业机械化科学研究院. 农业机械设计手册: 上册[M]. 北京: 中国农业科学技术出版社, 2007.
      [12]
      张波屏. 播种机械设计原理[M]. 北京: 机械工业出版社, 1982.
      [13]
      张德文, 李林, 王惠民. 精密播种机械[M]. 北京: 农业出版社, 1982.
      [14]
      罗锡文, 蒋恩臣, 王在满. 一种带有可拆式弹性转动护种装置的谷物排种器: 200810027896.7[P]. 2011-09-14.
      [15]
      宋建农, 王冲, 王继承. 同步柔性皮带护种器: 200720187281.1[P]. 2008-11-05.
      [16]
      廖庆喜, 黄吉星, 刘光, 等. 油菜播种机槽孔轮式精量排种器设计与试验[J]. 农业机械学报, 2011, 42(2): 63-66.
      [17]
      廖庆喜, 李兆东, 廖宜涛, 等. 气压护种式精量集排器: 201410483283. X[P]. 2016-05-11.
      [18]
      张顺, 夏俊芳, 周勇, 等. 气力滚筒式水稻直播精量排种器的设计与试验[J]. 农业工程学报, 2015, 31(1): 11-19. doi: 10.3969/j.issn.1002-6819.2015.01.002
      [19]
      张顺, 夏俊芳, 周勇, 等. 气力滚筒式水稻直播精量排种器排种性能分析与田间试验[J]. 农业工程学报, 2017, 33(3): 14-23. doi: 10.11975/j.issn.1002-6819.2017.03.003
      [20]
      李兆东, 雷小龙, 曹秀英, 等. 油菜精量气压式集排器的设计与试验[J]. 农业工程学报, 2015, 31(7): 9-17.
      [21]
      李兆东, 李姗姗, 曹秀英, 等. 油菜精量气压式集排器排种性能试验[J]. 农业工程学报, 2015, 31(18): 17-25. doi: 10.11975/j.issn.1002-6819.2015.18.004
      [22]
      朱德泉, 李兰兰, 文世昌, 等. 滑片型孔轮式水稻精量排种器排种性能数值模拟与试验[J]. 农业工程学报, 2018, 34(21): 17-26. doi: 10.11975/j.issn.1002-6819.2018.21.003
      [23]
      张永振. 材料的干摩擦学[M]. 北京: 科学出版社, 2012.
      [24]
      汪久根, 董光能. 摩擦学基础[M]. 西安: 西安电子科技大学出版社, 2018.
      [25]
      侯文英. 摩擦磨损与润滑[M]. 北京: 机械工业出版社, 2012.
      [26]
      王泽鹏, 张义, 徐梦飞. 基于分形理论的橡胶复合材料磨耗表面形貌表征[J]. 橡胶工业, 2018(1): 25-30. doi: 10.3969/j.issn.1000-890X.2018.01.006
      [27]
      王泽鹏, 李珂, 张义. 基于多重分形的橡胶复合材料磨耗表面形貌特征研究[J]. 北京化工大学学报(自然科学版), 2015, 42(1): 87-91.
      [28]
      MUKHOPADHYAY A. SEM study of worn surface morphology of an indigenous ‘EPDM’ rubber[J]. Polymer Testing, 2016, 52: 167-173. doi: 10.1016/j.polymertesting.2016.04.013
      [29]
      KALA A. Thermal characterization and surface morphology of natural rubber (NR)/Nitrile butadiene rubber (NBR) blend[J]. The IUP Journal of Physics, 2009, 2(4): 7-14.
      [30]
      XU S H, GU J, LUO Y F, et al. Influence of nanocrystalline cellulose on structure and properties of natural rubber/silica composites[J]. Polymer Composites, 2015, 36(5): 861-868. doi: 10.1002/pc.23005
      [31]
      SPANO D, PINTUS F, ESPOSITO F, et al. Euphorbia characias latex: Micromorphology of rubber particles and rubber transferase activity[J]. Plant Physiology and Biochemistry, 2015, 87: 26-34. doi: 10.1016/j.plaphy.2014.12.008
      [32]
      中国国家标准化管理委员会. 单粒(精密)播种机试验方法: GB/T 6973—2005[S]. 北京: 中国标准出版社, 2005.

    Catalog

      Article views (580) PDF downloads (741) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return