Citation: | YANG Wencai, PU Wang, PAN Wujian, et al. Design and experiment of soil covering and compacting device for Panax notoginseng seedling sowing[J]. Journal of South China Agricultural University, 2022, 43(2): 122-132. DOI: 10.7671/j.issn.1001-411X.202106019 |
Aiming at the special agronomy of small row spacing and shallow sowing depth of slot type Panax notoginseng seedling, a compact soil covering and compacting device for seed ditch was designed to improve the quality of P. notoginseng seedlings.
On the basis of the field experiment to determine the range of matrix compactness with high emergence rate and the best seedling grade of P. notoginseng, the dynamic analysis of the contact between roller and soil was carried out to determine the relevant parameters of the soil covering and compacting device. The process of soil covering and compacting was simulated and analyzed using discrete element method. Taking ditching depth and forward speed of the planter as test factors, the covering soil thickness and consistency as the test indexes, soil trough test was carried out to verify whether the relevant structural parameters of soil covering and compacting device met the requirements.
The results of field experiment showed that the range of substrate compactness was 200 to 400 kPa. The structural parameters of the soil covering and compacting device were as follows: The diameter of the pressing wheel was 150 mm, and the maximum spring stiffness was 140.5 N/mm. The simulation results showed that the soil covering thickness was 9.77 to 11.40 mm, the offset of grain spacing was 0.07 to 6.23 mm, and the offset of row spacing was 0.03 to 1.43 mm.The results of soil trough test showed that the optimal working parameters were as following: The trench depth was 25 mm, the forward speed of planter was 0.16 m/s, the average covering thickness was 11 mm, the consistency of soil covering thickness was 85.15%, and the compactness of substrate after compaction was 300 to 360 kPa.
According to the simulation analysis and soil trough test, the design of the soil covering and compacting device can meet the agronomic requirements of substrate compactness and covering soil thickness for P. notoginseng seedlings. The research results can provide references for the design of soil covering and compacting device of P. notoginseng.
[1] |
杨文彩, 朱有勇, 杜迁, 等. 基于农机农艺融合的三七机械化精密播种系统研究[J]. 广东农业科学, 2014, 41(2): 175-180. doi: 10.3969/j.issn.1004-874X.2014.02.041
|
[2] |
杨文彩, 朱有勇, 杜迁, 等. 云南三七工厂化育苗工程技术体系分析[J]. 南方农业学报, 2012, 43(12): 2069-2073. doi: 10.3969/j:issn.2095-1191.2012.12.2069
|
[3] |
BERTI M T, JOHNSON B L, HENSON A. Seeding depth and soil packing affect pure live seed emergence of cuphea[J]. Industrial Crops and Products, 2008, 27(3): 272-297. doi: 10.1016/j.indcrop.2007.10.004
|
[4] |
郭慧, 陈志, 贾洪雷, 等. 锥形轮体结构的覆土镇压器设计与试验[J]. 农业工程学报, 2017, 33(12): 56-65. doi: 10.11975/j.issn.1002-6819.2017.12.008
|
[5] |
刘选伟, 金亮, 赵亚祥, 等. 基于均匀设计的双层圆盘式覆土器的试验研究[J]. 中国农机化学报, 2016, 37(2): 26-28.
|
[6] |
苟文, 马荣朝, 樊高琼, 等. 套作模式下链环式覆土器的参数优化[J]. 农业工程学报, 2011, 27(12): 33-37. doi: 10.3969/j.issn.1002-6819.2011.12.007
|
[7] |
侯守印, 魏志鹏, 史乃煜, 等. 弹性螺旋式覆土镇压器的设计与参数优化试验[J]. 农机化研究, 2021, 43(3): 42-51. doi: 10.3969/j.issn.1003-188X.2021.03.008
|
[8] |
杨文彩, 徐路路, 杜一帆, 等. 三七育苗播种压轮仿形开沟装置的设计与试验[J]. 农业工程学报, 2020, 36(7): 53-62. doi: 10.11975/j.issn.1002-6819.2020.07.006
|
[9] |
赵淑红, 刘宏俊, 谭贺文, 等. 丘陵地区双向仿形镇压装置设计与试验[J]. 农业机械学报, 2017, 48(4): 82-89.
|
[10] |
张仕林, 赵武云, 戴飞, 等. 全膜双垄沟起垄覆膜机镇压作业过程仿真分析与试验[J]. 农业工程学报, 2020, 36(1): 20-30. doi: 10.11975/j.issn.1002-6819.2020.01.003
|
[11] |
LI B, CHEN Y, CHEN J, et al. Modeling of soil-claw interaction using the discrete element method(DEM)[J]. Soil & Tillage Research, 2016, 158(1): 177-185.
|
[12] |
CHIROUX R C, FOSTER W A, JOHNSON C E, et al. Three-dimensional finite element analysis of soil interaction with a rigid wheel[J]. Applied Mathematics & Computation, 2005, 162(2): 707-722.
|
[13] |
VIKTOR M, LARS J, MUNKHOLM, et al. Modelling approach for soil displacement in tillage using discrete element method[J]. Soil & Tillage Research, 2018, 183: 60-71.
|
[14] |
林涛, 汤秋香, 郝卫平, 等. 地膜残留量对棉田土壤水分分布及棉花根系构型的影响[J]. 农业工程学报, 2019, 35(19): 117-125. doi: 10.11975/j.issn.1002-6819.2019.19.014
|
[15] |
朱卫红, 铁双贵, 孙建军, 等. 不同土壤质地及播种深度对甜玉米出苗潜势的影响[J]. 河南农业科学, 2005(11): 35-36. doi: 10.3969/j.issn.1004-3268.2005.11.011
|
[16] |
曹慧英, 王丁波, 史建国, 等. 播种深度对夏玉米幼苗性状和根系特性的影响[J]. 应用生态学报, 2015, 6(8): 397-404.
|
[17] |
崔晓明, 张亚如, 张晓军, 等. 土壤紧实度对花生根系生长和活性变化的影响[J]. 华北农学报, 2016, 31(6): 131-136. doi: 10.7668/hbnxb.2016.06.021
|
[18] |
李瑞杰, 陈垣, 郭凤霞, 等. 素花党参种苗质量分级标准研究[J]. 中国中药杂志, 2012, 37(20): 3041-3046.
|
[19] |
International Organization for Standardization. Traditional Chinese medicine - Panax notoginseng seeds and seedlings: ISO 20408: 2017[S]. Geneva: ISO International Standards, 2017.
|
[20] |
贾铭钰. 免耕播种机镇压装置的实验研究与计算机辅助设计[D]. 北京: 中国农业大学, 2000.
|
[21] |
刘其潼, 张晋国, 杨娜, 等. 玉米免耕深松全层施肥精量播种机播前碎土镇压轮的研制[J]. 农机化研究, 2015, 37(7): 127-130. doi: 10.3969/j.issn.1003-188X.2015.07.029
|
[22] |
李宝筏. 农业机械学[M]. 北京: 中国农业出版社, 2018, 19-24.
|
[23] |
王益, 刘军, 王益权, 等. 黄土高原南部3种农田土壤剖面坚实度的变化规律[J]. 西北农林科技大学学报(自然科学版), 2007, 35(9): 200-204.
|
[24] |
汤庆, 吴崇友, 袁文胜, 等. 油菜毯状苗高速移栽机覆土镇压装置结构设计[J]. 中国农机化学报, 2016, 37(3): 20-22.
|
[25] |
贾洪雷, 郭慧, 郭明卓, 等. 行间耕播机弹性可覆土镇压轮性能有限元仿真分析及试验[J]. 农业工程学报, 2015, 31(21): 9-16. doi: 10.11975/j.issn.1002-6819.2015.21.002
|
[26] |
杨文彩, 杜一帆, 宋志鹏, 等. 2BQ-27型三七精密播种机仿形开沟器的改进设计[J]. 农机化研究, 2018, 40(3): 109-114. doi: 10.3969/j.issn.1003-188X.2018.03.022
|
[27] |
中华人民共和国国家质量监督检验检疫总局. 普通圆柱螺旋压缩弹簧尺寸及参数: GB/T 2089—2009 [S]. 北京: 中国标准出版社, 2009.
|
[28] |
李超群. 2BQ-28型三七精密播种机关键部件的研究与设计[D]. 昆明: 云南农业大学, 2016.
|
[29] |
向伟, 吴明亮, 吕江南, 等. 基于堆积试验的黏壤土仿真物理参数标定[J]. 农业工程学报, 2019, 35(12): 116-123. doi: 10.11975/j.issn.1002-6819.2019.12.014
|
[30] |
中华人民共和国农业部农业机械化管理司. 单粒(精密)播种机作业质量: NY/T 503—2015[S]. 北京: 中国标准出版社, 2015.
|