Citation: | WANG Runyu, LIN Xiuyi, ZHANG Weiwei, et al. Preparation and properties of aerogel sodium ion battery separator with carboxy methyl cellulose cross-linked polyacrylic acid[J]. Journal of South China Agricultural University, 2022, 43(1): 44-52. DOI: 10.7671/j.issn.1001-411X.202105046 |
The aerogel sodium ion battery separator with electrochemical performance exceeding that of glass fiber was prepared using carboxy methyl cellulose sodium (CMC) and polyacrylic acid (PAA) as raw materials, and the effect of cross-linking temperature on pore structure of the separator was explored to realize the electrochemistry performance exceeding that of glass fibre.
The sol-gel method and freeze-drying method were used to prepare CMC-PAA aerogel sheets, supplemented by high temperature cross-linking to stabilize the pore structure. The influence of temperature on the diaphragm was explored through microscopic testing and mechanical performance characterization. The charge-discharge specific capacities of sodium ion half cell with separators of CMC-PAA and glass fibre were compared.
With the increase of cross-linking temperature, the cross-linking degree of the carboxyl group of PAA and the hydroxyl group of CMC in the diaphragm increased. As a result, the pore size and porosity of the diaphragm slightly decreased; The elongation at break of the separator appeared to first increase and then to decrease. When the aerogel battery separator was prepared with a mass ratio of CMC︰PAA=1︰1 and a cross-linking temperature of 130 ℃, the charge-discharge specific capacity of the sodium ion battery exhibited 345.8, 317.3, 274.2, 136.8, 84.8, 61.8 and 341.4 mA·h/g at charge-discharge rates of 25, 50, 100, 250, 500, 1 000 and 25 mA/g current densities, showing better properties than those of glass fibres (279.0, 233.1, 190.5, 105.9, 69.6, 49.4, and 275.1 mA·h/g) under the same conditions. 130 ℃-CMC-PAA exhibited a much higher electrochemistry performance than conventional commercial polyolefin diaphragms due to its smaller electrolyte leakage rate, which resulted in an ionic conductivity of 1.877 mS/cm and a resistance of 5.52 Ω.
The application of battery separators made of two water-soluble materials of CMC and PAA under 130 ℃ cross-linking in sodium ion batteries has good potentials, having better electrochemistry performance than glass fiber.
[1] |
前瞻研究院. 中国电池产量规模逐年增加, 2020年产量达到188.5亿只[EB/OL]. (2021-05-17)[2021-05-25]. https://bg.qianzhan.com/trends/detail/506/210517-d9d16c27.html.
|
[2] |
黄洋洋, 方淳, 黄云辉. 高性能低成本钠离子电池电极材料研究进展[J]. 硅酸盐学报, 2021, 49(2): 256-271.
|
[3] |
张路鹏. 新型钠离子电池隔膜的制备及性能研究[D]. 郑州: 郑州大学, 2019.
|
[4] |
曹诚英. 锂离子电池与钠离子电池隔膜研究[D]. 上海: 上海交通大学, 2014.
|
[5] |
张鹏, 彭龙庆, 沈秀, 等. 锂离子电池功能隔膜的研究进展[J]. 厦门大学学报(自然科学版), 2021, 60(2): 208-218.
|
[6] |
ZHOU D, TANG X, GUO X, et al. Polyolefin‐based janus separator for rechargeable sodium batteries[J]. Angewandte Chemie International Edition, 2020, 59(38): 16725-16734. doi: 10.1002/anie.202007008
|
[7] |
CASAS X, NIEDERBERGER M, LIZUNDIA E. A sodium-ion battery separator with reversible voltage response based on water-soluble cellulose derivatives[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29264-29274.
|
[8] |
冯利利, 于天水, 程东浩, 等. 钠电池失效研究进展[J]. 中国科学: 化学, 2020, 50(12): 1801-1815.
|
[9] |
刘志宏, 柴敬超, 张建军, 等. 高性能纤维素基复合锂离子电池隔膜研究进展[J]. 高分子学报, 2015(11): 1246-1257.
|
[10] |
LAVOINE N, BERGSTRÖM L. Nanocellulose-based foams and aerogels: Processing, properties, and applications[J]. Journal of materials chemistry A, 2017, 5(31): 16105-16117.
|
[11] |
LIN N, BRUZZESE C, DUFRESNE A. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4948-4959.
|
[12] |
时冉. 生物多糖纤维基锂离子电池隔膜的制备及其性能研究[D]. 青岛: 青岛大学, 2017.
|
[13] |
胡江南. 基于醋酸纤维素的交联型锂离子电池隔膜制备与性能研究[D]. 苏州: 苏州大学, 2020.
|
[14] |
廖海洋. 锂离子电池隔膜的制备与改性研究[D]. 广州: 广东工业大学, 2018.
|
[15] |
李志彬. 纽扣电池的制作、组装与测试分析[J]. 现代工业经济和信息化, 2019, 9(7): 19-20.
|
[16] |
CHEN W, ZHANG L, LIU C, et al. Electrospun flexible cellulose acetate-based separators for sodium-ion batteries with ultralong cycle stability and excellent wettability: The role of interface chemical groups[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23883-23890.
|
[17] |
汤的雁, 苏晓倩, 刘浩杰. 锂电池隔膜测试方法评述[J]. 信息记录材料, 2014, 15(2): 43-50. doi: 10.3969/j.issn.1009-5624.2014.02.009
|
[18] |
王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2): 327-344.
|
[19] |
JO J H, JO C, QIU Z, et al. Nature-derived cellulose-based composite separator for sodium-ion batteries[J]. Frontiers in Chemistry, 2020, 8(1): 153-153.
|
[20] |
SUHARTO Y, LEE Y, YU J, et al. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 376(2): 184-190.
|
[21] |
ZHU Y, YANG Y, FU L, et al. A porous gel-type composite membrane reinforced by nonwoven: Promising polymer electrolyte with high performance for sodium ion batteries[J]. Electrochimica Acta, 2017, 224(1): 405-411.
|
[22] |
KIM J I, CHOI Y, CHUNG K Y, et al. A structurable gel-polymer electrolyte for sodium ion batteries[J/OL]. Advanced Functional Materials. 2017, 27(34). [2021-04-24]. https://doi.org/10.1002/adfm.1701768.
|
[23] |
陈梅英, 陈永雪, 王文成, 等. 过冷度对冷冻浓缩过程冰晶生长的宏微观研究[J]. 西南大学学报(自然科学版), 2010, 32(5): 140-145.
|
[24] |
YU M, HAN Y Y, LI J, et al. Three-dimensional porous carbon aerogels from sodium carboxymethyl cellulose/poly (vinyl alcohol) composite for high-performance supercapacitors[J]. Journal of Porous Materials, 2018, 25(6): 1679-1689. doi: 10.1007/s10934-018-0581-8
|
[25] |
孙仁诣. 聚丙烯酸/聚氧化乙烯(PAA/PEO)基聚合物电解质膜的制备和改性[D]. 合肥: 安徽大学, 2018.
|
[26] |
尹爱淑. 纤维素酰化交联及纳米复合增强水凝胶制备和性能研究[D]. 北京: 北京林业大学, 2020.
|
[27] |
梁笑笑. 可溶聚酰亚胺基单离子凝胶聚合物电解质的制备及性能研究[D]. 吉林: 长春工业大学, 2021.
|
[28] |
SURAPOLCHAI W, SCHIRALDI D A. The effects of physical and chemical interactions in the formation of cellulose aerogels[J]. Polymer Bulletin, 2010, 65(9): 951-960. doi: 10.1007/s00289-010-0306-x
|
[29] |
ARUNKUMAR R, VIJAYA KUMAR SAROJA A P, SUNDARA R. Barium titanate-based porous ceramic flexible membrane as a separator for room-temperature sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 3889-3896.
|