GENG Wenjing, ZHANG Xin, GUO Xiaoying, et al. Effect of nematode on the evaluation of water and soil environment quality in coal mining area[J]. Journal of South China Agricultural University, 2022, 43(3): 79-88. DOI: 10.7671/j.issn.1001-411X.202105042
    Citation: GENG Wenjing, ZHANG Xin, GUO Xiaoying, et al. Effect of nematode on the evaluation of water and soil environment quality in coal mining area[J]. Journal of South China Agricultural University, 2022, 43(3): 79-88. DOI: 10.7671/j.issn.1001-411X.202105042

    Effect of nematode on the evaluation of water and soil environment quality in coal mining area

    More Information
    • Received Date: May 26, 2021
    • Available Online: May 17, 2023
    • Objective 

      To evaluate the ecological environment quality of coal mining area in Huaibei, and provide a scientific and theoretical basis for monitoring the ecological environment change in the mining area.

      Method 

      The growth and development condition of Caenorhabditis elegans in the water environment of the mining area and the change of soil nematode community structure were studied to evaluate the ecological environment quality.

      Result 

      The water environment in the coal mining area reduced the life span, the survival rate, the body length and the number of eggs laid by C. elegans, meanwhile induced the apoptosis of C. elegans germ cells. The longer the coal mining time was and the closer the sampling site was to the mine, the more significant the inhibitory effect on the nematode development indicators was. Soil environment in coal mining area decreased the number of nematode genera, increased the relative abundance of phytophagous. At the same time, the Shannon diversity index, Wasilewska index and free-living nematode maturity index significantly decreased, and the phytophagous maturation index significantly increased, indicating that the mining environment reduced the soil health status. The longer the coal mining time was and the closer the sampling site was to the mine, the greater the influence on the soil nematode community structure was.

      Conclusion 

      The responses of C. elegans growth and development index to water environment and soil nematode community structure to soil environment have well indicated the quality of water environment and soil environment in Huaibei coal mining area, therefore nematode can be used to evaluate the quality of water environment and soil environment of coal mining area.

    • [1]
      张妍, 张磊, 程红光, 等. 南方某矿区土壤镉污染及作物健康风险研究[J]. 农业环境科学学报, 2020, 39(12): 2752-2761. doi: 10.11654/jaes.2020-0485
      [2]
      耿宜佳, 彭书传, 王晓辉, 等. 淮南煤矿区生态环境综合评价[J]. 安徽农业科学, 2016, 44(17): 73-76. doi: 10.3969/j.issn.0517-6611.2016.17.026
      [3]
      周晓雪, 孙建明, 刘建霞. 某大型铁钛矿区地下水环境现状调查与评价[J]. 城市地质, 2013, 8(3): 35-38. doi: 10.3969/j.issn.1007-1903.2013.03.009
      [4]
      陆金, 赵兴青. 铜陵狮子山矿区土壤重金属污染特征及生态风险评价[J]. 环境化学, 2017, 36(9): 1958-1967. doi: 10.7524/j.issn.0254-6108.2017010304
      [5]
      张浩, 王辉, 汤红妍, 等. 铅锌尾矿库土壤和蔬菜重金属污染特征及健康风险评价[J]. 环境科学学报, 2020, 40(3): 1085-1094.
      [6]
      杨莎, 程雨蒙, 王雷, 等. 安徽淮北百善煤矿废弃地土壤重金属污染评价[J]. 江苏师范大学学报(自然科学版), 2017, 35(2): 4-6.
      [7]
      孙立强, 孙崇玉, 刘飞, 等. 淮北煤矿周边土壤重金属生物可给性及人体健康风险[J]. 环境化学, 2019, 38(7): 1453-1460. doi: 10.7524/j.issn.0254-6108.2018092801
      [8]
      OCHIAGHA K E, OKOYE P A C, EBOAGU N C. The geo-accumulation index of some heavy metals in the roadsides soils of Onitsha South Local Government Area Anambra State[J]. Science Journal of Chemistry, 2020, 8(2): 42-47.
      [9]
      YEATES G W. Nematodes as soil indicators: Functional and biodiversity aspects[J]. Biology and Fertility of Soils, 2003, 37(4): 199-210. doi: 10.1007/s00374-003-0586-5
      [10]
      BONGERS T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1): 14-19. doi: 10.1007/BF00324627
      [11]
      WANG X, NIELSEN U N, YANG X, et al. Grazing induces direct and indirect shrub effects on soil nematode communities[J]. Soil Biology & Biochemistry, 2018, 121: 193-201.
      [12]
      LIU Y B, LI X Y, LIU Q Z. Soil nematode communities in jujube (Ziziphus jujuba Mill. ) rhizosphere soil under monoculture and jujube/wheat (Triticum aestivum Linn. ) intercropping systems, a case study in Xinjiang arid region, northwest of China[J]. European Journal of Soil Biology, 2016, 74: 52-59. doi: 10.1016/j.ejsobi.2016.02.001
      [13]
      KALETTA T, HENGARTNER M O. Finding function in novel targets: C. elegans as a model organism[J]. Nature Reviews Drug Discovery, 2006, 5(5): 387-398. doi: 10.1038/nrd2031
      [14]
      GILES A C, RANKIN C H. Behavioral and genetic characterization of habituation using Caenorhabditis elegans[J]. Neurobiology of Learning and Memory, 2009, 92(2): 139-146. doi: 10.1016/j.nlm.2008.08.004
      [15]
      LAKOWSKI B, HEKIMI S. Determination of life-span in Caenorhabditis elegans by four clock genes[J]. Science, 1996, 272(5264): 1010-1013. doi: 10.1126/science.272.5264.1010
      [16]
      郭肖颖, 王磊, 王斌, 等. 铁矿区水环境样品对秀丽隐杆线虫的毒性研究[J]. 生态毒理学报, 2015, 10(6): 219-228.
      [17]
      DHAWAN R, DUSENBERY D B, WILLIAMS P L. Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans[J]. Journal of Toxicology and Environmental Health: Part A, 1999, 58(7): 451-462. doi: 10.1080/009841099157179
      [18]
      KELLY K O, DERNBURG A F, STANFIELD G M, et al. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis[J]. Genetics, 2000, 156(2): 617-630. doi: 10.1093/genetics/156.2.617
      [19]
      JENKINS W R. A rapid centrifugal-flotation technique for separating nematodes from soil[J]. Plant Disease Reporter, 1964, 48: 692-692.
      [20]
      YEATES G W, BONGERS T. Nematode diversity in agroecosystems[J]. Agriculture Ecosystems and Environment, 1999, 74(1/2/3): 113-135.
      [21]
      YEATES G W, BONGERS T, DE GOEDE R G, et al. Feeding habits in soil nematode families and genera: An outline for soil ecologists[J]. Journal of Nematology, 1993, 25(3): 315-331.
      [22]
      尹文英. 中国土壤动物检索图鉴[M]. 北京: 科学出版社, 1998: 51-89.
      [23]
      HARADA H, KURAUCHI M, HAYASHI R, et al. Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents[J]. Ecotoxicology and Environmental Safety, 2007, 66(3): 378-383. doi: 10.1016/j.ecoenv.2006.02.017
      [24]
      TEJEDA-BENÍTEZ L, NOGUERA-OVIEDO K, AGA D S, et al. Toxicity profile of organic extracts from Magdalena River sediments[J]. Environmental Science and Pollution Research, 2018, 25(2): 1519-1532. doi: 10.1007/s11356-017-0364-9
      [25]
      国家环境保护总局科技标准司. 地表水环境质量标准: GB3838—2002[S]. 北京: 中国标准出版社, 2002: 1-5.
      [26]
      ŠALAMÚN P, HANZELOVÁ V, MIKLISOVÁ D. Variability in responses of soil nematodes to trace element contamination[J]. Chemosphere, 2018, 210: 166-174. doi: 10.1016/j.chemosphere.2018.07.009
      [27]
      国家环境保护局科技标准司. 土壤环境质量标准: GB15616—1995[S]. 北京: 中国标准出版社, 1995: 1-3.
      [28]
      HUNT P R. The C. elegans model in toxicity testing[J]. Journal of Applied Toxicology, 2017, 37(1): 50-59. doi: 10.1002/jat.3357
      [29]
      吉宗慧, 高珊, 王旗, 等. 硫化汞对灭活菌喂饲的秀丽隐杆线虫生长发育的影响[J]. 毒理学杂志, 2019, 33(3): 173-178.
      [30]
      蔡月, 李小平, 赵亚楠, 等. 蒙陕大型煤矿开采区水质化学特征与健康风险[J]. 生态学杂志, 2018, 37(2): 482-491.
      [31]
      HOEKSEMA J D, LUSSENHOP J, TEERI J A. Soil nematodes indicate food web responses to elevated atmospheric CO2[J]. Pedobiologia, 2000, 44(6): 725-735. doi: 10.1078/S0031-4056(04)70085-2
      [32]
      LI J, WANG D, FAN W, et al. Comparative effects of different organic materials on nematode community in continuous soybean monoculture soil[J]. Applied Soil Ecology, 2018, 125: 12-17. doi: 10.1016/j.apsoil.2017.12.013
      [33]
      SONG D, TARIQ A, PAN K, et al. Effects of straw mulching practices on soil nematode communities under walnut plantation[J]. Scientific Reports, 2020, 10(1): 15351. doi: 10.1038/s41598-020-72530-5.
      [34]
      华建峰, 林先贵, 尹睿, 等. 矿区砷污染对土壤线虫群落结构特征的影响[J]. 生态与农村环境学报, 2009, 25(1): 79-84. doi: 10.3969/j.issn.1673-4831.2009.01.016
      [35]
      高雅, 陆兆华, 魏振宽, 等. 露天煤矿区生态风险受体分析: 以内蒙古平庄西露天煤矿为例[J]. 生态学报, 2014, 34(11): 2844-2854.
      [36]
      孙浩, 周春财, 徐仲雨, 等. 淮北矿区土壤重金属空间分布与环境评价[J]. 中国科学技术大学学报, 2018, 48(7): 560-566. doi: 10.3969/j.issn.0253-2778.2018.07.006
    • Cited by

      Periodical cited type(10)

      1. 曹琳,吴风华. 唐山市植被覆盖度时空演变及地形因子的响应. 华北理工大学学报(自然科学版). 2025(01): 88-95 .
      2. 薛心悦,郭小平,薛东明,马原,杨帆. 基于GF-2影像的西北干旱荒漠低扰动区植被覆盖度提取方法研究(英文). Journal of Resources and Ecology. 2023(04): 833-846 .
      3. 韦惟,荆降龙,葛晓颖,孙磊,卢正. 长-短NDVI时序检测植被局部突变特征方法研究. 环境监测管理与技术. 2023(06): 28-34 .
      4. 李金朋,冯帅,杨鑫,李光明,赵冬雪,于丰华,许童羽. 融合CLAHE-SV增强Lab颜色特征的水稻覆盖度提取. 农业工程学报. 2023(24): 195-206 .
      5. 马吉刚,汤宇婷,张立民,吴忠胜,崔子腾,窦智. 引黄济青工程沿线生态因子1990-2020年时空变化特征. 水土保持通报. 2022(01): 283-289 .
      6. 赵鸿飞,路钊,伊洋,赵加正,王大庆,时玥,陈阳. 基于GF-6的植被覆盖度遥感估测研究. 测绘与空间地理信息. 2022(03): 19-23 .
      7. 何海清,严椰丽,凌梦云,杨勤锐,陈婷,李麟. 结合三维密集点云的无人机影像大豆覆盖度提取. 农业工程学报. 2022(02): 201-209 .
      8. 李菲菲,汤军,高贤君,杨元维,占杨英. 基于GEE的气候变化对豫北地区冬小麦播种面积与产量影响研究. 河南农业科学. 2022(08): 150-165 .
      9. 王泽,赵良军,牛凯,张芸,杨号. 基于遥感影像的植被覆盖度提取方法研究综述. 农业与技术. 2021(14): 25-29 .
      10. 许宏健,郎博宇,张雪,李鹏伟. 基于landsat8数据的植被覆盖度遥感估算. 现代化农业. 2020(11): 43-45 .

      Other cited types(14)

    Catalog

      Article views (181) PDF downloads (314) Cited by(24)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return