XIANG Yong, LI Qingbo, LIU Peng, et al. Analyses of drug resistance, multi-locus sequence typing and genetic evolution of Peudomonas aeruginosa in pheasant farms[J]. Journal of South China Agricultural University, 2022, 43(2): 11-18. DOI: 10.7671/j.issn.1001-411X.202105029
    Citation: XIANG Yong, LI Qingbo, LIU Peng, et al. Analyses of drug resistance, multi-locus sequence typing and genetic evolution of Peudomonas aeruginosa in pheasant farms[J]. Journal of South China Agricultural University, 2022, 43(2): 11-18. DOI: 10.7671/j.issn.1001-411X.202105029

    Analyses of drug resistance, multi-locus sequence typing and genetic evolution of Peudomonas aeruginosa in pheasant farms

    More Information
    • Received Date: May 13, 2021
    • Available Online: May 17, 2023
    • Objective 

      To investigate the epidemic characteristics, drug resistance, multi-locus sequence typing (MLST) and genetic evolution background of Pseudomonas aeruginosa in Guangdong Province, and provide a reference for clinical rational drug use.

      Method 

      Samples from dead embryos of pheasant and their surrounding environment were collected for separation and identification of P. aeruginosa. The K-B paper disk diffusion method was used to analyze P. aeruginosa sensitivity to 22 kinds of antimicrobials. The MLST method was applied to analyze the molecular epidemiology of P. aeruginosa strains. Seven house-keeping genes of each ST type were spliced sequentially, and we used MEGA7 software to conduct genetic evolution analysis to the spliced sequence.

      Result 

      A total of 145 P. aeruginosa strains (isolation rate 28.2%) were isolated from the collected 514 samples (405 dead embryo samples and 109 environment samples), including 24 strains from environmental samples (isolation rate 22.0%, 24/109) and 121 strains from dead embryos (isolation rate 29.9%, 121/405). Antibiotic drug sensitivity test showed that 145 strains of P. aeruginosa were naturally resistant to ampicillin, kanamycin and nalidixic acid, strongly resistant to complex sulfamethoxazole, chloramphenicol, tetracycline, followed by cefotaxime, with the drug resistance rates of 100%, 80.0%, 77.2% and 23.4% respectively. Except the natural drug resistance, the proportion of multiple drug resistant P. aeruginosa was up to 73.1% (106/145), and a certain proportion of P. aeruginosa strains which were resistant to imipenem appeared. MLST analysis showed that 89 P. aeruginosa strains with a broad spectrum of resistance were divided into 18 ST types, presenting high diversity. Among them, six ST types were the new types discovered in this study. The dead embryo isolates of P. aeruginosa were mainly ST-260, and the environmental sample isolates were mainly ST-2100 and ST-3202. Genetic evolution analysis showed that P. aeruginosa strains in environment were closely related to those in dead embryos.

      Conclusion 

      There are different degrees of P. aeruginosa infection or contamination in dead embryos and surrounding environment of three pheasant farms, and the isolates have strong drug resistance. Therefore, it is recommended that we should not only strengthen the breeding management and raise the awareness of bio-safety in the process of breeding, but also use antibacterial drugs reasonably according to the results of the drug sensitivity test.

    • [1]
      FOLIC M M, DJORDJEVIC Z, FOLIC N, et al. Epidemiology and risk factors for healthcare-associated infections caused by Pseudomonas aeruginosa[J]. Journal of Chemotherapy, 2020, 33(5): 294-301.
      [2]
      GUPTA K K, DEVI D. Characteristics investigation on biofilm formation and biodegradation activities of Pseudomonas aeruginosa strain ISJ14 colonizing low density polyethylene (LDPE) surface[J]. Heliyon, 2020, 6(7): e04398. doi: 10.1016/j.heliyon.2020.e04398
      [3]
      孙理云, 孔瑞娜, 温广辉, 等. 健康肉鸡高比率携有多重耐药铜绿假单胞菌[J]. 中国人兽共患病学报, 2012, 28(2): 193-195. doi: 10.3969/j.issn.1002-2694.2012.02.025
      [4]
      李玲. 鸡铜绿假单胞菌的分离鉴定及生物学特性研究[D]. 保定: 河北农业大学, 2013.
      [5]
      HASSAN W H, IBRAHIM A M K, SHANY S A S, et al. Virulence and resistance determinants in Pseudomonas aeruginosa isolated from pericarditis in diseased broiler chickens in Egypt[J]. Journal of advanced veterinary and animal research, 2020, 7(3): 452-463. doi: 10.5455/javar.2020.g441
      [6]
      SALEEM S, BOKHARI H. Resistance profile of genetically distinct clinical Pseudomonas aeruginosa isolates from public hospitals in central Pakistan[J]. Journal of Infection and Public Health, 2020, 13(4): 598-605. doi: 10.1016/j.jiph.2019.08.019
      [7]
      MAUNDERS E A, TRINIMAN R C, WESTERN J, et al. Global reprogramming of virulence and antibiotic resistance in Pseudomonas aeruginosa by a single nucleotide polymorphism in elongation factor, fusA1[J]. Journal of Biological Chemistry, 2020, 295(48): 16411-16426. doi: 10.1074/jbc.RA119.012102
      [8]
      卢斌, 姚燕, 陆英, 等. 某二甲医院铜绿假单胞菌标本来源、病区分布及耐药性分析[J]. 浙江医学, 2021, 43(6): 653-655. doi: 10.12056/j.issn.1006-2785.2021.43.6.2020-3073
      [9]
      MERRADI M, KASSAH-LAOUAR A, AYACHI A, et al. Occurrence of VIM-4 metallo-beta-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital[J]. Journal of Infection in Developing Countries, 2019, 13(4): 284-290. doi: 10.3855/jidc.10679
      [10]
      JAHAN M I, RAHAMAN M M, HOSSAIN M A, et al. Occurrence of intI1-associated VIM-5 carbapenemase and co-existence of all four classes of beta-lactamase in carbapenem-resistant clinical Pseudomonas aeruginosa DMC-27b[J]. Journal of Antimicrobial Chemotherapy, 2020, 75(1): 86-91.
      [11]
      MARTINS W M B S, NARCISO A C, CAYO R, et al. SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from microbiota of migratory birds[J]. Diagnostic Microbiology and Infectious Disease, 2018, 90(3): 221-227. doi: 10.1016/j.diagmicrobio.2017.11.003
      [12]
      FERNANDES M R, SELLERA F P, MOURA Q, et al. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa, Brazil[J]. Emerging Infectious Diseases, 2018, 24(6): 1160-1162. doi: 10.3201/eid2406.180335
      [13]
      TREEPONG P, KOS V N, GUYEUX C, et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone[J]. Clinical Microbiology and Infection, 2018, 24(3): 258-266. doi: 10.1016/j.cmi.2017.06.018
      [14]
      PEREZ-VAZQUEZ M, SOLA-CAMPOY P J, ZURITA A M, et al. Carbapenemase-producing Pseudomonas aeruginosa in Spain: Interregional dissemination of the high risk-clones ST175 and ST244 carrying blaVIM-2, blaVIM-1, blaIMP-8, blaVIM-20 and blaKPC-2[J]. International Journal of Antimicrobial Agents, 2020, 56(1): 106026. doi: 10.1016/j.ijantimicag.2020.106026.
      [15]
      XIANG Y, YAN L, ZHENG X C, et al. Rapid detection of Pseudomonas aeruginosa by cross priming amplification[J]. Journal of Integrative Agriculture, 2020, 19(10): 2523-2529. doi: 10.1016/S2095-3119(20)63187-2
      [16]
      Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 28th informational CLSI document: M100-S28[S]. 2018. www.clsi.org.
      [17]
      CURRAN B, JONAS D, GRUNDMANN H, et al. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa[J]. Journal of Clinical Microbiology, 2004, 42(12): 5644-5649. doi: 10.1128/JCM.42.12.5644-5649.2004
      [18]
      DAVIS T J, KARANJIA A V, BHEBHE C N, et al. Pseudomonas aeruginosa volatilome characteristics and adaptations in chronic cystic fibrosis lung infections[J]. mSphere, 2020, 5(5): e00843-20.
      [19]
      DAME J A, BEYLIS N, NUTTALL J, et al. Pseudomonas aeruginosa bloodstream infection at a tertiary referral hospital for children[J]. BMC Infectious Diseases, 2020, 20(1): 729. doi: 10.1186/s12879-020-05437-1.
      [20]
      RAMOS M S, FURLAN J P R, GALLO I F L, et al. High level of resistance to antimicrobials and heavy metals in multidrug-resistant Pseudomonas sp. isolated from water sources[J]. Current Microbiology, 2020, 77(10): 2694-2701. doi: 10.1007/s00284-020-02052-w
      [21]
      JACKSON L, DEPAS W, MORRIS A J, et al. Visualization of Pseudomonas aeruginosa within the sputum of cystic fibrosis patients[J]. Jove-Journal of Visualized Experiments, 2020(161): e61631.
      [22]
      秦柯君, 曹献芹, 陈派强, 等. 铜绿假单胞菌临床分布及耐药机制研究[J]. 中国病原生物学杂志, 2021, 16(2): 224-227.
      [23]
      杨婧, 陈丽华. 铜绿假单胞菌生物被膜与宿主免疫的关系[J]. 中国微生态学杂志, 2017, 29(7): 861-865.
      [24]
      吴振安, 张亮. 铜绿假单胞菌的临床分布及耐药性分析[J]. 中国临床医生杂志, 2021, 49(1): 55-57. doi: 10.3969/j.issn.2095-8552.2021.01.017
      [25]
      郑百慧, 龚春, 梅黎, 等. 呼吸与危重症医学病房分离的碳青霉烯耐药铜绿假单胞菌的分子流行病学[J]. 中华医院感染学杂志, 2020, 30(17): 2610-2614.
      [26]
      MOLINA-MORA J A, CHINCHILLA-MONTERO D, CHAVARRIA-AZOFEIFA M, et al. Transcriptomic determinants of the response of ST-111 Pseudomonas aeruginosa AG1 to ciprofloxacin identified by a top-down systems biology approach[J]. Scientific Reports, 2020, 10(1): 13717. doi: 10.1038/s41598-020-70581-2.
      [27]
      MULET X, FERNANDEZ-ESGUEVA M, NORTE C, et al. Validation of MALDI-TOF for the early detection of the ST175 high-risk clone of Pseudomonas aeruginosa in clinical isolates belonging to a Spanish nationwide multicenter study[J]. Enfermedades Infecciosas y Microbiología Clínica, 2021, 39(6): 279-282.
      [28]
      BOTELHO J, GROSSO F, PEIXE L. Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a bla(GES-6) carbapenemase[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(1): 77-83. doi: 10.1093/jac/dkx337
    • Cited by

      Periodical cited type(25)

      1. 胡兰梅,王丽娜,钱正敏,曹成全,魏福伦,唐艳龙. 生物农药印楝素对三叶虫萤幼虫的毒力测定. 湖北植保. 2025(01): 31-33 .
      2. 李俊杰,杨晓燕,唐慧琳,高俊恒,郭子坤,郭春阳,王冬寒,叶佳成,袁向群,李怡萍. 抑肽酶对防治梨小食心虫的两种植物源农药的增效作用. 植物保护学报. 2025(01): 105-112 .
      3. 薛育,侯则颖,王新谱. 苜蓿根瘤象成虫防控药剂筛选及助剂增效作用. 农业科学研究(中英文). 2025(01): 53-58 .
      4. 周陈杰,马闪闪,洪庆红,鲁吐浦拉,王肖庆,吴凯蝶,江文楠,张羽菲,王圣印. 13种杀虫剂对木橑尺蠖的室内毒力测定及田间防效. 甘肃农业大学学报. 2024(02): 171-178 .
      5. 常向前,吕亮,郑正安,王晶,邓颍骏,杨小林,王佐乾,张舒. 四种助剂对防治褐飞虱的植物源农药1%印楝素水分散粒剂毒力的影响. 昆虫学报. 2024(04): 490-497 .
      6. 赵秋兰,潘美佳,刘红芳. 紫堇乙醇提取物对草地贪夜蛾的杀虫活性及其成分分析. 南方农业. 2024(11): 48-51 .
      7. 舒本水,黄玉婷,余萱悦,刘翠婷,谢心怡,沈皓,林进添. 印楝素胁迫下草地贪夜蛾幼虫实时荧光定量PCR内参基因表达稳定性评价. 广东农业科学. 2024(08): 21-30 .
      8. 刘锦霞,李晶,张丹丹,李娜,付麟雲,丁品,吴孔明. 11种植物源杀虫活性成分对草地贪夜蛾的毒力测定. 植物保护. 2023(01): 351-356 .
      9. 刘琴,杨云福,刘现平,刘丽,成虹,李雪娇. 不同生物农药防治草地贪夜蛾试验效果. 云南农业. 2023(05): 65-67 .
      10. 冯磊,唐圣松,刘芳,戴长庚,邢济春,李鸿波. 7种生物杀虫剂对草地贪夜蛾和粘虫幼虫的毒力与防效. 环境昆虫学报. 2022(01): 35-43 .
      11. 黄阿国. 闽南地区草地贪夜蛾监测与田间药剂防治效果研究. 现代农业科技. 2022(06): 74-75+84 .
      12. 夏丽娟,李靖,梁竟宇,王学贵,朱新成,李彬,李涌泉. 印楝素对亚洲玉米螟的毒力与防效及对寄主作物高粱的安全性评价. 南京农业大学学报. 2022(03): 539-544 .
      13. 郭志敏,吕海翔,马康生,万虎,郭子平,李建洪. 7种生物源杀虫剂对草地贪夜蛾的室内毒力研究. 安徽农业科学. 2022(19): 139-143 .
      14. 雷琼,林鑫,巨亚绒. 6种农药对陕西省关中地区草地贪夜蛾的田间药效试验. 农业工程. 2022(08): 131-134 .
      15. 何文,张秀芬,黄珍玲,黄小娟,蒋婷,郭素云. 两种植物源杀虫剂对甘薯小象甲的室内防效. 农业研究与应用. 2022(06): 32-36 .
      16. Jing WAN,HUANG Cong,LI Chang-you,ZHOU Hong-xu,REN Yong-lin,LI Zai-yuan,XING Long-sheng,ZHANG Bin,QIAO Xi,LIU Bo,LIU Cong-hui,XI Yu,LIU Wan-xue,WANG Wen-kai,QIAN Wan-qiang,Simon MCKIRDY,WAN Fang-hao. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda(Lepidoptera: Noctuidae). Journal of Integrative Agriculture. 2021(03): 646-663 .
      17. 太一梅,李志敏,朱晓明,刘萍,李貌,毕金华,朱斌. 生物农药对草地贪夜蛾的田间防治效果. 中国植保导刊. 2021(03): 66-68+77 .
      18. 汤云霞,桑芝萍,赵健,潘丹丹. 沿海地区7种生物农药防治玉米田草地贪夜蛾的药效试验简报. 上海农业科技. 2021(03): 111-112+114 .
      19. 范建,杜红莲,汉瑞林,杨继琼,马玉梅,周立为. 3种生物药剂对玉米草地贪夜蛾的防治效果. 云南农业科技. 2021(05): 34-35 .
      20. 陈秀琴,刘其全,田新湖,何玉仙,邱良妙,占志雄. 草地贪夜蛾生物防治研究进展. 福建农业学报. 2021(08): 981-988 .
      21. 邵雪花,赖多,匡石滋. FOXO基因对印楝素诱导sf9细胞凋亡的影响. 广东农业科学. 2021(11): 96-102 .
      22. 张海波,王风良,陈永明,于淦军,褚姝频,卢鹏,陈华,朱加萍,车晋英,张芳,周福才. 核型多角体病毒对玉米草地贪夜蛾的控制作用研究. 植物保护. 2020(02): 254-260 .
      23. 梁沛,谷少华,张雷,高希武. 我国草地贪夜蛾的生物学、生态学和防治研究概况与展望. 昆虫学报. 2020(05): 624-638 .
      24. 葛阳,孙嘉惠,王铁霖,石旺鹏,袁庆军,郭兰萍. 药源植物在草地贪夜蛾防控中的应用研究进展. 植物保护学报. 2020(04): 706-718 .
      25. 刘丁予,李昂. 3种生物农药对草地贪夜蛾的防效试验. 云南农业科技. 2020(S1): 11-13 .

      Other cited types(18)

    Catalog

      Article views (579) PDF downloads (716) Cited by(43)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return