• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
CHEN Shengde, ZHAN Yilong, LAN Yubin, et al. Influence of crosswind on droplet drift of flat-fan nozzle in aviation plant protection UAV[J]. Journal of South China Agricultural University, 2021, 42(4): 89-98. DOI: 10.7671/j.issn.1001-411X.202105025
Citation: CHEN Shengde, ZHAN Yilong, LAN Yubin, et al. Influence of crosswind on droplet drift of flat-fan nozzle in aviation plant protection UAV[J]. Journal of South China Agricultural University, 2021, 42(4): 89-98. DOI: 10.7671/j.issn.1001-411X.202105025

Influence of crosswind on droplet drift of flat-fan nozzle in aviation plant protection UAV

More Information
  • Received Date: March 24, 2021
  • Available Online: May 17, 2023
  • Objective 

    Crosswind is the main factor affecting droplet drift and spraying effect of aerial spraying for plant protection unmanned aerial vehicle (UAV). To explore the influence of crosswind on droplet deposition and drift during aerial spraying, and provide data support and theoretical guidance for selection of operation parameters and improvement of key components of aerial spraying for plant protection UAV.

    Method 

    Lechler series LU 120-015 and LU 120-03 standard fan-shaped pressure nozzles were taken as the research objects. Based on the particle tracking technology of computational fluid dynamics (CFD) discrete phase model, the simulation tests of droplet flow field and pesticide spraying discrete phase in the wind tunnel were carried out under suitable boundary conditions. Through the simulation, the deposition and drift distribution of droplets sprayed by fan nozzle were analyzed visually to explore the drift characteristics of droplets at different lateral wind speeds. The deposition and drift characteristics of droplets were tested and analyzed in the agricultural aviation special wind tunnel under the similar conditions.

    Result 

    The simulation results showed that the drift degree of discrete phase droplets was more serious and the horizontal drift of droplets was more obvious with the increase of lateral wind speed. With the increase of lateral wind speed, the accurate deposition rate (Ra) decreased exponentially from 14.11% to 0.66%, and the horizontal drift rate (Rh) increased linearly from 14.25% to 60.58%. The wind tunnel test results showed that the Rh values of droplets were 0.4%, 48.1% and 75.1% at the lateral wind speeds of 1, 3 and 6 m/s respectively, and the droplets appeared the winding phenomenon to a certain extent in the wind tunnel. The results of correlation analysis showed that there was a significant correlation between the horizontal drift rates of computer simulation and wind tunnel test, and the R2 was 0.963 (P<0.05).

    Conclusion 

    The simulation test has a good prediction effect on droplet drift under aerial spraying condition. The simulation-assistanted wind tunnel test method can get a reasonable result of the droplet deposition and drift of the flat-fan nozzle commonly used in aviation plant protection operation.

  • [1]
    张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. doi: 10.6041/j.issn.1000-1298.2014.10.009
    [2]
    DEKEYSER D, DUGA A T, VERBOVEN P, et al. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling[J]. Biosystems Engineering, 2013, 114(2): 157-169. doi: 10.1016/j.biosystemseng.2012.11.013
    [3]
    CROSS J V, WALKLATE P J, MURRAY R A, et al. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 3: Effects of air volumetric flow rate[J]. Crop Protection, 2003(22): 381-394.
    [4]
    周志艳, 明锐, 臧禹, 等. 中国农业航空发展现状及对策建议[J]. 农业工程学报, 2017, 33(20): 1-13. doi: 10.11975/j.issn.1002-6819.2017.20.001
    [5]
    张京, 何雄奎, 宋坚利, 等. 无人驾驶直升机航空喷雾参数对雾滴沉积的影响[J]. 农业机械学报, 2012, 43(12): 94-96. doi: 10.6041/j.issn.1000-1298.2012.12.017
    [6]
    陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017, 38(4): 103-109. doi: 10.7671/j.issn.1001-411X.2017.04.017
    [7]
    王昌陵, 宋坚利, 何雄奎, 等. 植保无人机飞行参数对施药雾滴沉积分布特性的影响[J]. 农业工程学报, 2017, 33(23): 109-116. doi: 10.11975/j.issn.1002-6819.2017.23.014
    [8]
    张京, 宋坚利, 何雄奎, 等. 扇形雾喷头雾化过程中雾滴运动特性[J]. 农业机械学报, 2011, 42(4): 66-69.
    [9]
    张宋超, 薛新宇, 秦维彩, 等. N-3型农用无人直升机航空施药飘移模拟与试验[J]. 农业工程学报, 2015, 31(3): 87-93. doi: 10.3969/j.issn.1002-6819.2015.03.012
    [10]
    TESKE M E, THISTLE H W, HEWITT A J, et al. Rotary atomizer drop size distribution database[J]. Transactions of the ASABE, 2005, 48(3): 917-921. doi: 10.13031/2013.18496
    [11]
    张慧春, 周宏平, 郑加强, 等. 农药助剂对空中和地面防控林业有害生物的雾滴粒径影响[J]. 林业科学, 2020, 56(5): 121-132.
    [12]
    丁素明, 薛新宇, 董祥, 等. 喷雾参数对雾滴沉积性能影响研究[J]. 农业机械学报, 2020, 51(S2): 315-322.
    [13]
    KIRK I W. Measurement and prediction of atomization parameters from fixed-wing aircraft spray nozzles[J]. Transactions of the ASABE, 2007, 50(3): 693-703. doi: 10.13031/2013.23123
    [14]
    FRITZ B K, HOFFMANN W C, LAN Y. Evaluation of the EPA drift reduction technology (DRT) low-speed wind tunnel protocol[J]. Journal of ASTM International, 2009, 6(4): 183-191.
    [15]
    HOFFMANN W C, FRITZ B K, LAN Y. Evaluation of a proposed drift reduction technology high-speed wind tunnel testing protocol[J]. Journal of ASTM International, 2009, 6(4): 212-223.
    [16]
    MARTIN D E, CARLTON J B. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications[J]. Applied Engineering in Agriculture, 2013, 29(1): 5-10. doi: 10.13031/2013.42528
    [17]
    曾爱军, 何雄奎, 陈青云, 等. 典型液力喷头在风洞环境中的飘移特性试验与评价[J]. 农业工程学报, 2005, 21(10): 78-81. doi: 10.3321/j.issn:1002-6819.2005.10.018
    [18]
    张慧春, DORR G, 郑加强, 等. 扇形喷头雾滴粒径分布风洞试验[J]. 农业机械学报, 2012, 43(6): 53-57. doi: 10.6041/j.issn.1000-1298.2012.06.010
    [19]
    唐青, 陈立平, 张瑞瑞, 等. 高速气流条件下标准扇形喷头和空气诱导喷头雾化特性[J]. 农业工程学报, 2016, 32(22): 121-128. doi: 10.11975/j.issn.1002-6819.2016.22.017
    [20]
    DUGA A T, DELELE M A, RUYSEN K, et al. Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers[J]. Biosystems Engineering, 2016, 154: 62-75.
    [21]
    HONG S W, ZHAO L, ZHU H. CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers[J]. Computers and Electronics in Agriculture, 2018, 149: 121-132. doi: 10.1016/j.compag.2017.07.011
    [22]
    孙国祥, 汪小旵, 丁为民, 等. 基于CFD离散相模型雾滴沉积特性的模拟分析[J]. 农业工程学报, 2012, 28(6): 13-19. doi: 10.3969/j.issn.1002-6819.2012.06.003
    [23]
    刘雪美, 苑进, 张晓辉, 等. 气流辅助式喷雾工况参数对雾滴飘移特性的影响[J]. 农业机械学报, 2012, 43(S1): 67-72.
    [24]
    郑力铭. ANSYS FLUENT15.0流体计算从入门到精通[M]. 北京. 电子工业出版社, 2015: 156-181.
    [25]
    CROWE C T, SMOOT L D. Multicomponent conservation equations[C]//SMOOT L D, PRATT D T. Pulverized-coal combustion and gasification. Boston: Springer, 1979: 15-54.
    [26]
    ROURKE T D, HALL W J. Seismic behavior and vulnerability of pipelines[J]. ASCE, 1991, 11: 73-79.
    [27]
    张慧春, DORR G, 郑加强, 等. 喷雾飘移的风洞试验和回归模型[J]. 农业工程学报, 2015, 31(3): 94-100. doi: 10.3969/j.issn.1002-6819.2015.03.013
  • Cited by

    Periodical cited type(6)

    1. 李仁凤,韩顺凯,杨风波. 耦合风场四旋翼植保无人机下洗流与雾滴分布研究. 中国农机化学报. 2024(07): 81-86 .
    2. 安小康,李富根,闫晓静,徐军,罗媛媛,黄修柱,董丰收. 植保无人飞机施用农药应用研究进展及管理现状. 农药学学报. 2023(02): 282-294 .
    3. 姚镇海,江春,姚叶青,丁浩,诸葛杰,马邵翔. 民用无人机作业气象标准制订及气象保障体系构建浅析. 气象科技进展. 2023(02): 67-72 .
    4. 胡维月,席玉强,尹新明. 中国农用植保无人机施药技术研究进展. 现代农业科技. 2022(10): 95-99 .
    5. 李欣璐,殷敏琪. 植保无人机在精准农业中雾滴飘移影响因素分析. 现代农业装备. 2022(02): 37-42 .
    6. 隆志方,黄蕊,王继红,刘翔,刘贵阳. 植保无人机喷施锌锰型水稻降Cd叶面阻控剂的飞行参数研究. 农业环境科学学报. 2021(09): 1869-1876 .

    Other cited types(7)

Catalog

    Article views (727) PDF downloads (623) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return