Citation: | WU Caiyan, LIAO Shenquan, QI Nanshan, et al. Epidemiological surveillance and genetic evolution of Riemerella anatipestifer in Guangdong Province[J]. Journal of South China Agricultural University, 2022, 43(2): 1-10. DOI: 10.7671/j.issn.1001-411X.202105022 |
To clarify serotype, drug resistance and genetic evolution of Rimerella anatipestifer in Guangdong.
The isolates of R. anatipestifer were isolated and identified from samples of the large-scale duck farms. Serotype was identified by glass agglutination test. The minimum inhibitory concentration was tested by double dilution method in test tube, and the drug sensitivity was analyzed. Whole genome sequencing technology was used to analyze the sequence characteristices and construct the genetic evolution tree of the core genome.
A total of 168 isolates of R. anatipestifer were isolated and identified. All serotype 1, 2, 3, 5, 6, 7, 8 and 10 were prevalent. Serotype 1 was dominant, reaching 54.17%(91/168), followed by serotype 2 (27.97%, 47/168). The 48 representative isolates were used for drug sensitivty test and sequence analysis. The isolates showed high drug resistance to gentamicin, kanamycin and ciprofloxacin hydrochloride, and the drug resistance rates were all more than 80%. The drug resistance rates to oxytetracycline, tetracycline hydrochloride, chlortetracycline hydrochloride, ofloxacin, norfloxacin, sulfadimidine and sulfamethoxydiazine were all more than 60%, and the drug resistance rates to amoxicillin, cefotaxime and spectinomycin were all less than 30%. The 48 representative isolates were resistant to 5−12 kinds of drugs, and there were 44 types of drug resistance spectrum. The whole genome sequences of 46 isolates were obtained successfully, and six drug-resistant genes were detected. The detection rates of drug-resistant geneserm(F) and tet(X) were 73.91% (34/46) and 82.60% (38/46), respectively. In addition, 95.65% (44/46) of the isolates carried more than two drug-resistant genes at the same time. Total 18 isolates (39.13%, 18/46) were typed successfully with 11 kinds of ST. Further genetic tree construction based on the core genome showed that all the sequenced isolates had a high similarity with the isolates from China in the multi-locus sequence typing (MLST) database, and mainly existed in the dominant clones of Clade 1 and Clade 3.
Serotype 1 is superior in the investigated R. anatipestifer isolates, and the drug resistance is serious. The drug-resistant genes and resistant phenotype have certain relevance. ST type has a high diversity. The genetic background of tested strains was similar with Chinese strains in MLST database. The results of this study can provide a basis for vaccine immunity prevention and drug therapy of R. anatipestife disease as well as for understanding the genetic evolution characteristics of R. anatipestife.
[1] |
罗满林. 动物传染病学[M]. 北京: 中国林业出版社, 2016: 413-416.
|
[2] |
HUANG L, WANG M S, MO T, et al. Role of LptD in resistance to glutaraldehyde and pathogenicity in Riemerella anatipestifer[J]. Frontiers in Microbiology, 2019, 10: 1443. doi: 10.3389/fmicb.2019.01443.
|
[3] |
覃宗华, 蔡建平, 吕敏娜, 等. 鸭疫里氏杆菌病和大肠杆菌病鉴别诊断双重PCR方法的建立和应用[J]. 畜牧兽医学报, 2008, 39(4): 517-521. doi: 10.3321/j.issn:0366-6964.2008.04.024
|
[4] |
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: Twenty-eighth informational supplement: M100−S28[S]. Wayne, 2018.
|
[5] |
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals: Second informational supplement: VET01−S2[S]. Wayne, 2013.
|
[6] |
BANKEVICH A, NURK S, ANTIPOV D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5): 455-477. doi: 10.1089/cmb.2012.0021
|
[7] |
GUREVICH A, SAVELIEV V, VYAHHI N, et al. QUAST: Quality assessment tool for genome assemblies[J]. Bioinformatics, 2013, 29(8): 1072-1075. doi: 10.1093/bioinformatics/btt086
|
[8] |
BORTOLAIA V, KAAS R S, RUPPE E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes[J]. Journal of Antimicrobial Chemotherapy, 2020, 75(12): 3491-3500. doi: 10.1093/jac/dkaa345
|
[9] |
TREANGEN T J, ONDOV B D, KOREN S, et al. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes[J]. Genome Biology, 2014, 15(11): 524. doi: 10.1186/s13059-014-0524-x.
|
[10] |
CORANDER J, MARTTINEN P, SIRÉN J, et al. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations[J]. BMC Bioinformatics, 2008, 9: 539-553. doi: 10.1186/1471-2105-9-539.
|
[11] |
LETUNIC I, BORK P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees[J]. Nucleic Acids Research, 2016, 44(W1): W242-W245. doi: 10.1093/nar/gkw290
|
[12] |
言天久. 百色市鸭疫里默氏杆菌病流行病学调查与防治的研究[D]. 南宁: 广西大学, 2007.
|
[13] |
林树乾, 何元龙, 赵增成, 等. 山东省鸭疫里默氏杆菌的分离鉴定和血清型分析[J]. 山东农业科学, 2010(12): 92-94. doi: 10.3969/j.issn.1001-4942.2010.12.029
|
[14] |
李振清. 山东地区鸭疫里氏杆菌的分离鉴定[J]. 畜牧与兽医, 2012, 44(6): 59-62.
|
[15] |
王卓昊, 胡紫萌, 吴坤, 等. 苏北及周边地区鸭疫里氏杆菌分离鉴定与药敏试验[J]. 畜牧与兽医, 2019, 51(12): 70-75.
|
[16] |
程冰花, 郝东敏, 钟洪义, 等. 安徽地区鸭疫里默氏杆菌的分离鉴定及药物筛选[J]. 当代畜牧, 2019(7): 12-15.
|
[17] |
左春生, 李迎晓, 徐光科, 等. 14株鸭疫里默氏杆菌的部分生物学特性分析[J]. 江苏农业科学, 2020, 48(15): 221-225.
|
[18] |
吴彩艳, 覃宗华, 袁建丰, 等. 广东地区鸭疫里氏杆菌的血清型及抗药性情况调查[J]. 畜牧与兽医, 2009, 41(5): 22-25.
|
[19] |
张济培, 张小峰, 陈建红, 等. 珠三角及邻地鸭疫里默氏杆菌主要生物学特性的研究[J]. 中国预防兽医学报, 2012, 34(2): 100-103. doi: 10.3969/j.issn.1008-0589.2012.02.05
|
[20] |
任晓梅, 王小兰, 韩文龙, 等. 鸭疫里默氏杆菌的分离鉴定与生物学特性研究[J]. 中国动物传染病学报, 2018, 26(4): 47-51.
|
[21] |
SANDHU T, HARRY E G. Serotypes of Pasteurella anatipestifer isolated from commercial White Pekin ducks in the United States[J]. Avian Diseases, 1981, 25(2): 497-502. doi: 10.2307/1589941
|
[22] |
TIMMS L M, MARSHALL T A. Laboratory assessment of protection given by experimental Pasteurella anatipestifer vaccine[J]. British Veterinary Journal, 1989, 145(5): 483-493. doi: 10.1016/0007-1935(89)90059-6
|
[23] |
PATHANASOPHON P, SAWADA T, TANTICHAROENYOS T. New serotypes of Riemerella anatipestifer isolated from ducks in Thailand[J]. Avian Pathology, 1995, 24(1): 195-199. doi: 10.1080/03079459508419059
|
[24] |
LOH H, TEO T P, TAN H C. Serotypes of ‘Pasteurella’ anatipestifer isolates from ducks in Singapore: A proposal of new serotypes[J]. Avian Pathology, 1992, 21(3): 453-459. doi: 10.1080/03079459208418863
|
[25] |
BISGAARD M. Antigenic studies on pasteurella anatipestifer, species incertae sedis, using slide and tube agglutination[J]. Avian Pathology, 1982, 11(3): 341-350. doi: 10.1080/03079458208436109
|
[26] |
CHA S, SEO H, WEI B, et al. Surveillance and characteration of Riemerella anatipestifer from wild birds in south Korea[J]. Journal of Wildlife Diseases, 2015, 51(2): 341-347. doi: 10.7589/2014-05-128
|
[27] |
OMALEKI L, BLACKALL P J, BISGAARD M, et al. Molecular and serological characterization of Riemerella isolates associated with poultry in Australia[J]. Avian Pathology, 2021, 50(1): 31-40. doi: 10.1080/03079457.2020.1828568
|
[28] |
马芹, 宋甲宝, 王方正, 等. 鸭源致病菌的分离鉴定及耐药性分析[J]. 中国兽医杂志, 2016, 52(10): 80-81. doi: 10.3969/j.issn.0529-6005.2016.10.032
|
[29] |
荆雅玮, 陈芳芳, 左佳坤, 等. 8株鸭疫里默氏杆菌安徽分离株的生物学特性分析[J]. 中国动物传染病学报, 2018, 26(2): 34-39.
|
[30] |
包涛涛, 鲜思美, 包细明, 等. 六株鸭疫里默氏杆菌贵州株的分离鉴定与其耐药性分析[J]. 中国兽医科学, 2020, 50(10): 1278-1285.
|
[31] |
朱元军, 王小莺, 杨德鸿, 等. 我国南方部分地区鸭疫里氏杆菌的分离鉴定及耐药情况调查[J]. 畜牧与兽医, 2019, 51(12): 106-111.
|
[32] |
刑林林. 鸭疫里默氏杆菌红霉素耐药机制的研究[D]. 泰安: 山东农业大学, 2015.
|
[33] |
常陈星, 刘美含, 杨跃飞, 等. 鸭疫里默氏杆菌氨基糖苷类药物的耐药性分析[J]. 黑龙江畜牧兽医, 2020(13): 101-103.
|
[34] |
仲崇岳. 鸭疫里默氏杆菌基因分型及耐药机理研究[D]. 成都: 四川农业大学, 2009.
|
[35] |
蔡秀磊. 鸭疫里默氏杆菌耐药性与耐药基因研究[D]. 泰安: 山东农业大学, 2007.
|