Citation: | SUN Daozong, ZHAN Xurui, LIU Sijing, et al. Simulation research on narrow-band active noise reduction of wind driven sprayer based on NLMS algorithm[J]. Journal of South China Agricultural University, 2021, 42(6): 71-78. DOI: 10.7671/j.issn.1001-411X.202104038 |
To analyze the noise in the air outlet of wind driven sprayer, explore the appropriate noise reduction methods and improve the noise reduction effect.
This paper analyzed the noise frequency spectrum in the air outlet of the wind driven sprayer, adopted the narrow-band active noise reduction method to reduce the noise of fan outlet, analyzed three common noise reduction algorithms, comparatively considered the convergence speed and noise reduction performance of three algorithms, and selected the NLMS algorithm as the core algorithm. In order to improve the frequency disturbance caused by non acoustic sensors in the narrow-band active noise reduction system, genetic algorithm was introduced to optimize the initial frequency calculated by the acquisition parameters of the rotator. The fan noise was taken as the input signal, and five frequency channels (197, 394, 591, 788 and 985 Hz) were used for narrow-band active noise reduction simulation.
The noise of the wind driven sprayer was mainly rotating noise caused by fan blade rotation. The simulation results showed that the system performance was improved after 33 iterations of the genetic algorithm. When the NLMS algorithm was iterated 10 000 times, the system converged, and the amplitudes of the five frequency channels were reduced by 0.192, 0.041, 0.024, 0.018 and 0.210 mm respectively, and the overall noise reduction effect was about 14 dB.
The NLMS algorithm has better reduction effect on the noise of wind driven sprayer. Genetic algorithm can effectively improve the frequency disturbance caused by non acoustic sensors. This study provides a reference for active noise reduction methods of wind driven sprayers.
[1] |
邱威, 顾家冰, 丁为民, 等. 果园风送式喷雾机防治效果试验[J]. 农业机械学报, 2015, 46(1): 94-99. doi: 10.6041/j.issn.1000-1298.2015.01.014
|
[2] |
唐俊, 王军, 隽智辉, 等. 正弦锯齿尾缘对轴流风机尾迹及气动性能的影响[J]. 工程热物理学报, 2017, 38(10): 2145-2150.
|
[3] |
伍先俊, 李志明. 风机叶片噪声机理及降噪[J]. 风机技术, 2001(4): 11-13. doi: 10.3969/j.issn.1006-8155.2001.04.005
|
[4] |
杨冰冰. 对旋轴流风机噪声分布及降噪措施研究[D]. 太原: 太原理工大学, 2019.
|
[5] |
夏国芳, 刘剑. 一种应对窄带主动噪声控制中频率不匹配的方法[J]. 噪声与振动控制, 2016, 36(1): 26-31.
|
[6] |
罗磊, 孙金玮, 黄博妍, 等. 一种应对窄带非线性主动噪声控制的混合结构[J]. 电子学报, 2017, 45(8): 1801-1809. doi: 10.3969/j.issn.0372-2112.2017.08.001
|
[7] |
李楠, 安峰岩, 杨飞然, 等. 一种用于主动降噪耳机的权重滤波误差信号滤波-x最小均方算法[J]. 应用声学, 2018, 37(3): 391-399. doi: 10.11684/j.issn.1000-310X.2018.03.012
|
[8] |
苏雨, 卢剑伟, 邵浩然. 基于反馈系统FXLMS的非线性主动降噪[J]. 新型工业化, 2018, 8(3): 40-46.
|
[9] |
王士浩, 王生栋, 查富生, 等. 基于FXLMS算法的主动噪声控制降噪效果研究[J]. 机械与电子, 2015(12): 23-27. doi: 10.3969/j.issn.1001-2257.2015.12.006
|
[10] |
张文清, 何清波, 顾正华. 基于次级声源布局优化的主动降噪实验研究[J]. 机械与电子, 2017, 35(6): 3-7. doi: 10.3969/j.issn.1001-2257.2017.06.001
|
[11] |
晋永荣, 陈晓丽. 日本新干线列车噪声声源分布及主动降噪实车试验研究综述[J]. 现代信息科技, 2019, 3(3): 168-169. doi: 10.3969/j.issn.2096-4706.2019.03.066
|
[12] |
冯天培, 孙跃东, 王岩松, 等. 汽车车内制动噪声主动控制[J]. 噪声与振动控制, 2016, 36(1): 75-78.
|
[13] |
周鑫楚. 浅谈纯电动汽车驾驶室减振降噪技术[J]. 汽车与驾驶维修(维修版), 2018(1): 117.
|
[14] |
潘立志, 梁亚坤, 占敏, 等. 基于SYSNOISE的轴流式风机管道噪声辐射仿真分析[J]. 机械与电子, 2009(9): 32-35. doi: 10.3969/j.issn.1001-2257.2009.09.011
|
[15] |
张欢. 管道噪声主动控制系统通道建模的研究[D]. 西安: 陕西科技大学, 2019.
|
[16] |
NEGRI E, ARDAKANI H D, CATTANEO L, et al. A digital twin-based scheduling framework including equipment health index and genetic algorithms[J]. IFAC-PapersOnLine, 2019, 52(10): 43-48. doi: 10.1016/j.ifacol.2019.10.024
|
[17] |
毛梦菲. 窄带主动噪声控制系统实时仿真及硬件实现[D]. 南京: 南京航空航天大学, 2017.
|
[18] |
于梦娇. 管道低频噪声主动控制系统的DSP实现[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
[19] |
张志永, 韩秀苓, 李传光. 管道及局部空间有源降噪系统几种算法的比较及其DSP实现[C]//第二十届中国控制会议论文集. 大连: 大连理工大学出版社, 2001.
|
[20] |
王玉成. 遗传算法在汽车管道噪声有源控制中的应用研究[D]. 淄博: 山东理工大学, 2015.
|
[21] |
孙晓阳. 电力变压器噪声分析与有源降噪研究[D]. 济南: 山东大学, 2014.
|
[22] |
褚志刚, 蔡鹏飞, 蒋忠翰, 等. 基于声阵列技术的柴油机噪声源识别[J]. 农业工程学报, 2014, 30(2): 23-30.
|
[23] |
翟之平, 张龙, 刘长增, 等. 秸秆抛送装置外壳振动辐射噪声数值模拟与试验验证[J]. 农业工程学报, 2017, 33(16): 72-79. doi: 10.11975/j.issn.1002-6819.2017.16.010
|
[24] |
李民, 陈烨龙, 庞建武, 等. 消隙齿轮降低柴油机怠速噪声的应用研究[J]. 农业工程学报, 2017, 33(1): 63-69. doi: 10.11975/j.issn.1002-6819.2017.01.008
|
[25] |
董亮, 代翠, 孔繁余, 等. 叶片出口安放角对离心泵作透平噪声的影响[J]. 农业工程学报, 2015, 31(6): 69-75.
|
[26] |
CHU Y J, MAK C M, ZHAO Y, et al. Performance analysis of a diffusion control method for ANC systems and the network design[J]. Journal of Sound and Vibration, 2020, 475: 115273. doi: 10.1016/j.jsv.2020.115273.
|
[27] |
AKHTAR M T. A time-varying normalized step-size based generalized fractional moment adaptive algorithm and its application to ANC of impulsive sources[J]. Applied Acoustics, 2019, 155: 240-249. doi: 10.1016/j.apacoust.2019.05.030
|
[28] |
ROUT N K, DAS D P, PANDA G. PSO based adaptive narrowband ANC algorithm without the use of synchronization signal and secondary path estimate[J]. Mechanical Systems and Signal Processing, 2019, 114: 378-398. doi: 10.1016/j.ymssp.2018.05.018
|
[29] |
ZHU W, LUO L, XIE A, et al. A novel FELMS-based narrowband active noise control system and its convergence analysis[J]. Applied Acoustics, 2019, 156: 229-245. doi: 10.1016/j.apacoust.2019.07.003
|
[30] |
DINH C L, LI D, ZHANG J. M-max partial update leaky bilinear filter-error least mean square algorithm for nonlinear active noise control[J]. Applied Acoustics, 2019, 156: 158-165. doi: 10.1016/j.apacoust.2019.07.006
|
[31] |
ZHOU C, UTYUZHNIKOV S. Real-time active noise control with preservation of desired sound[J]. Applied Acoustics, 2020, 157: 106971. doi: 10.1016/j.apacoust.2019.07.019.
|
[32] |
浦玉学, 张方, 姜金辉, 等. 一种基于延迟系数技术的次级通道在线辨识新方法[J]. 振动与冲击, 2014, 33(23): 74-80.
|
[33] |
刘永, 张晓, 梁健, 等. 一种新型非线性自适应滤波器[J]. 南开大学学报(自然科学版), 2005(1): 57-59.
|
[34] |
邹海山, 邱小军. 复杂声学环境中人耳附近空间有源降噪研究综述[J]. 物理学报, 2019, 68(5): 7-18.
|
[35] |
袁军, 吕韦喜, 刘东旭, 等. 基于次级通道在线辨识新算法交叉更新ANC系统[J]. 自动化与仪表, 2019, 34(3): 58-65.
|
[36] |
杨理, 蒋芸霜, 周旋, 等. 变压器自适应主动降噪技术研究[J]. 计算机测量与控制, 2014, 22(3): 875-878. doi: 10.3969/j.issn.1671-4598.2014.03.072
|
[37] |
黄博妍, 常琳, 马亚平, 等. 一种应对非平稳频率失调的窄带主动噪声控制系统[J]. 自动化学报, 2015, 41(1): 186-193.
|