Citation: | LI Kang, DING Weimin, GUO Binbin, et al. Design and test of goose incubator monitoring system based on PLC and cloud platform[J]. Journal of South China Agricultural University, 2022, 43(1): 110-119. DOI: 10.7671/j.issn.1001-411X.202104023 |
A goose incubator monitoring system based on programmable logic controller (PLC) and cloud platform was designed in order to improve the incubation performance of goose eggs, and to solve the problems of low automation, large temperature fluctuations, poor temperature robustness, and complex on-site operations in the incubation process of the existing goose incubator.
Based on the technological requirements in the incubation process of goose eggs and the working principle of the goose incubator, PLC was used as the main controller to design the hardware circuit and software program of the system which could realize the automatic control of temperature, humidity, turning eggs and water spraying of the incubator. The human-machine interaction interface for on-site monitoring of the incubator was designed with a touch screen and the configuration software. Moreover, the remote monitoring system was designed with general packet radio service (GPRS) smart gateway, cloud platform server and mobile terminal. When the system was working, the GPRS smart gateway read the memory data in the PLC and uploaded the data to the cloud platform server through the 4G/5G network. The mobile terminal could directly access and download the data in the cloud platform server, and the data were presented as a chart on the WeChat official account, APP or webpage.
The monitoring system was stable and in good condition. The temperature sampling data were highly robust and 100% met the control requirements in the incubation process. The automatic control helped to improve the automation level of the goose hatching machine. In the hatching production test, the average hatching rate of fertilized goose eggs was 87.84%, which was 1.44% higher than the current highest record.
The system can meet the hatching requirements of goose eggs, and has high control accuracy. It achieves the automatic control, on-site monitoring and remote monitoring of the goose incubator and has a good human-machine interaction interface. It has guiding significance for promoting the development of agricultural equipment automation and informatization.
[1] |
雷惊涛, 刘灵芝. 畜禽产业空间集聚研究: 以肉鹅产业为例[J]. 家畜生态学报, 2018, 39(12): 51-55. doi: 10.3969/j.issn.1673-1182.2018.12.009
|
[2] |
侯水生. 2018年度水禽产业发展现状、未来发展趋势与建议[J]. 中国畜牧杂志, 2019, 55(3): 124-128.
|
[3] |
侯水生, 刘灵芝. 2019年水禽产业现状、未来发展趋势与建议[J]. 中国畜牧杂志, 2020, 56(3): 130-135.
|
[4] |
张丹, 梁忠, 顾华兵, 等. 江苏省水禽养殖情况调查与分析[J]. 中国家禽, 2020, 42(5): 98-102.
|
[5] |
黄运茂, 田允波, 唐军. 广东省水禽种业的发展现状、存在问题及未来趋势[J]. 广东饲料, 2017, 26(9): 12-15. doi: 10.3969/j.issn.1005-8613.2017.09.003
|
[6] |
WIJNEN H J, MOLENAAR R, VAN ROOVERT-REIJRINK I A M, et al. Effects of incubation temperature pattern on broiler performance[J]. Poultry Science, 2020, 99(8): 3897-3907. doi: 10.1016/j.psj.2020.05.010
|
[7] |
MAATJENS C M, REIJRINK I A M, MOLENAAR R, et al. Temperature and CO2 during the hatching phase. I. Effects on chick quality and organ development[J]. Poultry Science, 2014, 93(3): 645-654. doi: 10.3382/ps.2013-03490
|
[8] |
CUTCHIN H R, WINELAND M J, CHRISTENSEN V L, et al. Embryonic development when eggs are turned different angles during incubation[J]. Journal of Applied Poultry Research, 2009, 18(3): 447-451. doi: 10.3382/japr.2008-00079
|
[9] |
戴子淳, 姚家君, 任玉成, 等. 大角度翻蛋孵化机的研制及其在鹅种蛋孵化中的应用[J]. 中国家禽, 2017, 39(6): 63-66.
|
[10] |
LONG W, LI F, LUO L, et al. The design of temperature and humidity control system for incubation based on data fusion and fuzzy decoupling[C]//IEEE. 2015 IEEE International Conference on Mechatronics & Automation. IEEE: Beijing, 2015.
|
[11] |
THOMTHONG T, SANTRON S, YUYENDEE W, et al. Temperature and humidity fuzzy logic controller development for small incubator[C]// Proceedings of 42nd Kasetsart University Annual Conference, Bangkok: Kasetsart University, 2004: 247-257.
|
[12] |
SHAFIUDIN S, KHOLIS N. Monitoring system and temperature controlling on PID based poultry hatching incubator[J]. IOP Conference Series: Materials Science and Engineering, 2018, 336: 012007.
|
[13] |
周国雄, 廖迎新, 沈学杰. 基于神经网络的孵化过程组合预测方法[J]. 系统仿真学报, 2014, 26(4): 892-896.
|
[14] |
周国雄, 蒋辉平. 基于分层结构模糊免疫PID的孵化过程控制[J]. 农业工程学报, 2007, 23(12): 167-170. doi: 10.3321/j.issn:1002-6819.2007.12.032
|
[15] |
周国雄, 吴舒辞. 禽蛋孵化过程组合预测研究[J]. 农业机械学报, 2012, 43(12): 211-216. doi: 10.6041/j.issn.1000-1298.2012.12.038
|
[16] |
王思江. 孵化设备智能控制系统的设计[D].青岛: 山东科技大学, 2011.
|
[17] |
张薇. 微电脑控制多功能孵化机的设计[D].哈尔滨: 东北农业大学, 2014.
|
[18] |
杨正君, 高丽伟. 基于GPRS的远程孵化机自动控制系统[J]. 铜仁学院学报, 2012, 14(6): 128-130. doi: 10.3969/j.issn.1673-9639.2012.06.032
|
[19] |
孙冠男, 周淑芹. 基于物联网技术的智能孵化远程监控系统设计[J]. 黑龙江畜牧兽医, 2015(9): 111-113.
|
[20] |
周剑锋. 自动控制技术在农业机械中的应用[J]. 农业技术与装备, 2019(10): 17-18. doi: 10.3969/j.issn.1673-887X.2019.10.007
|
[21] |
祁力钧, 杜政伟, 冀荣华, 等. 基于GPRS的远程控制温室自动施药系统设计[J]. 农业工程学报, 2016, 32(23): 51-57. doi: 10.11975/j.issn.1002-6819.2016.23.007
|
[22] |
刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18. doi: 10.6041/j.issn.1000-1298.2020.01.001
|
[23] |
GAO Y F, LI G P, JIANG C D, et al. Design of the wire rope cleaning and detection line control system based on touch screen and PLC[J]. Applied Mechanics & Materials, 2013, 455: 495-501.
|
[24] |
黄东岩, 朱龙图, 贾洪雷, 等. 基于GPS和GPRS的远程玉米排种质量监测系统[J]. 农业工程学报, 2016, 32(6): 162-168.
|
[25] |
陈瑜, 郑欢, 马瑞峻, 等. 基于PLC的拔抛秧机械手监控系统设计与试验[J]. 华南农业大学学报, 2021, 42(5): 97-104.
|
[26] |
潘建秋, 江丹莉, 黄植霞, 等. 反季节生产中马岗鹅与狮头鹅繁殖性能的观察[J]. 仲恺农业工程学院学报, 2018, 31(2): 33-36. doi: 10.3969/j.issn.1674-5663.2018.02.007
|
[1] | FU Xiao, WEI Xiaoli, YAN Shichao, DAI Baisheng, JIANG Runjie, ZHOU Jianzhao, ZHANG Yi, WANG Xinjie, SHEN Weizheng. Status and prospect of research on intelligent monitoring of breeding environment in livestock barns[J]. Journal of South China Agricultural University, 2024, 45(5): 672-684. DOI: 10.7671/j.issn.1001-411X.202405022 |
[2] | CHEN Shengde, CHEN Yigang, XU Xiaojie, LIU Junyu, GUO Jianzhou, HU Shiyun, LAN Yubin. Monitoring of corn leaf area index based on multispectral remote sensing of UAV[J]. Journal of South China Agricultural University, 2024, 45(4): 608-617. DOI: 10.7671/j.issn.1001-411X.202310025 |
[3] | WANG Ting, OU Rongxi, YU Li, QI Haixia, ZHANG Jiaen. PLC-based automatic monitoring system and its application in the rainwater storage capacity of the roof greening ecosystem[J]. Journal of South China Agricultural University, 2023, 44(3): 484-494. DOI: 10.7671/j.issn.1001-411X.202203062 |
[4] | DILIXIATI Yimamu, ZHOU Jianping, XU Yan, FAN Xiangpeng, YALIKUN Shawuti. Cotton pest monitoring based on Logistic algorithm and remote sensing image[J]. Journal of South China Agricultural University, 2022, 43(2): 87-95. DOI: 10.7671/j.issn.1001-411X.202106004 |
[5] | CHEN Yu, ZHENG Huan, MA Ruijun, ZHENG Pufeng, ZHAN Jiahao. Design and experiment of monitoring system for rice seedling transplanting manipulator based on the programmable logic controller[J]. Journal of South China Agricultural University, 2021, 42(5): 97-104. DOI: 10.7671/j.issn.1001-411X.202011038 |
[6] | ZENG Jingyuan, HONG Tiansheng, YANG Zhou, LI Fu. Design and experiment of real-time monitoring system for orchard irrigation based on internet of things[J]. Journal of South China Agricultural University, 2020, 41(6): 145-153. DOI: 10.7671/j.issn.1001-411X.202005009 |
[7] | SHI Hongxu, LI Xiuhua, LI Minzan, WANG Wei, WEN Biaotang. Remote diagnosis system of banana diseases based on deep learning[J]. Journal of South China Agricultural University, 2020, 41(6): 92-99. DOI: 10.7671/j.issn.1001-411X.202004027 |
[8] | XU Peiquan, SHEN Mingxia, LIU Longshen, HE Canlong, KANG Jian, TAO Yuandong. Design and implementation of piggery environmental monitoring system based on ECS and WSN[J]. Journal of South China Agricultural University, 2018, 39(1): 112-119. DOI: 10.7671/j.issn.1001-411X.2018.01.018 |
[9] | YUE Xuejun, WANG Yefu, LIU Yongxin, XU Xing, CHEN Shurong, CHEN Yixi, HOU Miancong, YAN Yingwei, QUAN Dongping, CHEN Zhuliang. Orchard environmental monitoring system based on GPRS and ZigBee[J]. Journal of South China Agricultural University, 2014, 35(4): 109-113. DOI: 10.7671/j.issn.1001-411X.2014.04.020 |
[10] | ZHANG Guo-quan~1,XIAO Li~1,ZHANG Bing~2,CEN Guan-jun~1. Research on urban vegetable security monitoring system and its application[J]. Journal of South China Agricultural University, 2005, 26(2): 108-111. DOI: 10.7671/j.issn.1001-411X.2005.02.027 |