GUO Yajun, SHEN Dianjing, ZHAO Ming, et al. Uptake and translocation properties of rotenone nanopesticide mediated by hollow mesoporous silica nanoparticles in cucumber plant[J]. Journal of South China Agricultural University, 2022, 43(1): 85-93. DOI: 10.7671/j.issn.1001-411X.202104002
    Citation: GUO Yajun, SHEN Dianjing, ZHAO Ming, et al. Uptake and translocation properties of rotenone nanopesticide mediated by hollow mesoporous silica nanoparticles in cucumber plant[J]. Journal of South China Agricultural University, 2022, 43(1): 85-93. DOI: 10.7671/j.issn.1001-411X.202104002

    Uptake and translocation properties of rotenone nanopesticide mediated by hollow mesoporous silica nanoparticles in cucumber plant

    More Information
    • Received Date: March 31, 2021
    • Available Online: May 17, 2023
    • Objective 

      Nanocarrier was used as pesticide carrier to improve the utilization ratio of pesticide.

      Method 

      Hollow mesoporous silica nanoparticles (HMSNs) were synthesized by self-template method using water as etchant on the basis of solid mesoporous silica nanoparticles (MSNs). Botanical pesticide rotenone was loaded into HMSNs (Rot@HMSNs) by solvent evaporation method. The sustained-release property and insecticidal activity of Rot@HMSNs were determined. Distribution of rotenone in Rot@HMSNs of cucumber was obtained by HPLC.

      Result 

      The particle size of HMSNs was about 250 nm and the specific surface area was 999.4 m2/g. The prepared Rot@HMSNs had uniform particle size and a considerable loading rate of rotenone (46.7%). The Rot@HMSNs had good releasing performance and the release model was in accordance with the Ritger-Peppas model. HMSNs significantly improved the uptake and translocation abilities of rotenone in cucumber plants.

      Conclusion 

      The utilization rate of rotenone can be improved by nanocarrier HMSNs. The study is of great significance for reducing pesticide use and environmental pollution.

    • [1]
      CHEN B, QUAN G L, WANG Z H, et al. Hollow mesoporous silicas as a drug solution delivery system for insoluble drugs[J]. Powder Technology, 2013, 240: 48-53. doi: 10.1016/j.powtec.2012.07.008
      [2]
      SHE X, CHEN L, VELLEMAN L, et al. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery[J]. Journal of Colloid and Interface Science, 2015, 445: 151-160. doi: 10.1016/j.jcis.2014.12.053
      [3]
      何顺, 高云昊, 万虎, 等. 基于介孔二氧化硅纳米粒子的农药可控释放研究进展[J]. 农药学学报, 2016, 18(4): 416-423.
      [4]
      DEODHAR G V, ADAMS M L, TREWYN B G. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles[J]. Biotechnology Journal, 2017, 12(1): 1600408. doi: 10.1002/biot.201600408
      [5]
      SUN J, FAN Y, ZHANG P, et al. Self-enriched mesoporous silica nanoparticle composite membrane with remarkable photodynamic antimicrobial performances[J]. Journal of Colloid and Interface Science, 2020, 559: 197-205. doi: 10.1016/j.jcis.2019.10.021
      [6]
      WANG Y, ZHAO Q, HAN N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11(2): 313-327. doi: 10.1016/j.nano.2014.09.014
      [7]
      GAO Y H, ZHANG Y H, HE S, et al. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide[J]. Biochemical Engineering Journal, 2019, 364: 361-369.
      [8]
      TAN W M, HOU N, PANG S, et al. Improved biological effects of uniconazole using porous hollow silica nanoparticles as carriers[J]. Pest Management Science, 2012, 68(3): 437-443. doi: 10.1002/ps.2288
      [9]
      FAVORS Z, WANG W, BAY H H, et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Scientific Reports, 2014: 4: 4605.
      [10]
      SONG C Y, WANG C L, ZHU H Y, et al. Preparation, characterization and catalytic activity for CO oxidation of SiO2 hollow spheres supporting CuO catalysts[J]. Catalysis Letters, 2008, 120(3/4): 215-220. doi: 10.1007/s10562-007-9272-9
      [11]
      QI G G, WANG Y B, ESTEVEZ L, et al. Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell[J]. Chemistry of Materials, 2010, 22(9): 2693-2695. doi: 10.1021/cm100174e
      [12]
      郑昆, 杨红, 温刚, 等. 中空介孔二氧化硅纳米材料(HMSNs)的合成及其生物相容性[J]. 吉林大学学报(理学版), 2016, 54(1): 148-151.
      [13]
      TAO C Y, YAN H W, YUAN X D, et al. Synthesis of shape-controlled hollow silica nanostructures with a simple soft-templating method and their application as superhydrophobic antireflective coatings with ultralow refractive indices[J]. Colloid Surface A Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 501: 17-23.
      [14]
      KAO K C, TSOU C J, MOU C Y. Collapsed (kippah) hollow silica nanoparticles[J]. Chemical Communications, 2012, 48(28): 3454-3456. doi: 10.1039/c2cc30411b
      [15]
      LIU J, HARTONO S B, JIN Y G, et al. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres[J]. Journal of Materials Chemistry, 2010, 20(22): 4595-4601. doi: 10.1039/b925201k
      [16]
      MANDAL M, KRUK M. Family of single-micelle-templated organosilica hollow nanospheres and nanotubes synthesized through adjustment of organosilica/surfactant ratio[J]. Chemistry of Materials, 2012, 24(1): 123-132. doi: 10.1021/cm202136r
      [17]
      HU Y, ZHANG Q, GOEBL J, et al. Control over the permeation of silica nanoshells by surface-protected etching with water[J]. Physical Chemistry Chemical Physics, 2010, 12(38): 11836-11842. doi: 10.1039/c0cp00031k
      [18]
      白杨, 吴宜凡, 卢洪燕, 等. 介孔二氧化硅和中空介孔二氧化硅载体用于提高难溶性药物溶出度的比较[J]. 沈阳药科大学学报, 2019, 36(4): 293-299.
      [19]
      ZHANG Q, ZHANG T, GE J, et al. Permeable silica shell through surface-protected etching[J]. Nano Letters, 2008, 8(9): 2867-2871. doi: 10.1021/nl8016187
      [20]
      刘珍秀, 黄继光. 蝶形花亚科植物的杀虫、抑菌活性及其活性成分研究进展[J]. 农药, 2019, 58(6): 391-397.
      [21]
      颜成生, 彭曙光, 单雪华, 等. 鱼藤酮对烟草斜纹夜蛾和烟青虫的防治效果[J]. 作物研究, 2015, 29(6): 647-650. doi: 10.3969/j.issn.1001-5280.2015.06.17
      [22]
      中国农药信息网, 农药登记数据[EB/OL]. [2021-02-03]. http://www.chinapesticide.org.cn/hysj/index.jhtml.
      [23]
      李晓红, 黄志友, 杨贤均, 等. 不同品种烟草对斜纹夜蛾生活史和产卵选择行为的影响[J]. 植物保护, 2021, 47(1): 123-127.
      [24]
      何晓婵, 余至秋, 周小军, 等. 不同类型生物杀虫剂对莲藕斜纹夜蛾的室内药效试验[J]. 浙江农业科学, 2019, 60(7): 1167-1168.
      [25]
      TENG Z G, SU X D, ZHENG Y Y, et al. Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach[J]. Chemistry of Materials, 2013, 25(1): 98-105. doi: 10.1021/cm303338v
      [26]
      沈殿晶, 张铭瑞, 陈小军, 等. 基于介孔二氧化硅的鱼藤酮纳米颗粒的制备及其性能研究[J]. 农药学学报, 2020, 22(6): 1061-1068.
      [27]
      CHEN X J, XU H H, YANG W, et al. Research on the effect of photoprotectants on photostabilization of rotenone[J]. Journal of Photochemistry and Photobiology B: Biology, 2009, 95(2): 93-100. doi: 10.1016/j.jphotobiol.2009.01.003
      [28]
      徐志英, 任莉, 陈小军, 等. 2.5%鱼藤酮微胶囊悬浮剂在普通白菜上的消解特性[J]. 中国蔬菜, 2018(11): 64-67.
      [29]
      COSTA P, SOUSA LOBO J M. Modeling and comparison of dissolution profiles[J]. European Journal of Pharmaceutical Sciences, 2001, 13(2): 123-133. doi: 10.1016/S0928-0987(01)00095-1
      [30]
      ENGLAND C G, MILLER M C, KUTTAN A, et al. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles[J]. European Journal of Pharmaceutical Sciences, 2015, 92: 120-129.
      [31]
      叶玉杰, 任德全, 刘嵩, 等. Origin软件拟合溶蚀型载体药物传输系统的ritger-peppas方程研究[J]. 亚太传统医药, 2014, 10(4): 62-63.
      [32]
      HUSSAIN H I, YI Z, ROOKES J E, et al. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants[J]. Journal of Nanoparticle Research, 2013, 15(6): 1676. doi: 10.1007/s11051-013-1676-4
      [33]
      GE J, LU M, WANG D, et al. Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake[J]. Chemosphere, 2016, 144: 201-206. doi: 10.1016/j.chemosphere.2015.08.072
      [34]
      BIDYARANI N, KUMAR U. Synthesis of rotenone loaded zein nano-formulation for plant protection against pathogenic microbes[J]. RSC Advances, 2019, 9(70): 40819-40826. doi: 10.1039/C9RA08739G
      [35]
      中华人民共和国卫生健康委员会、中华人民共和国农业农村部、国家市场监督管理总局. 食品中农药最大残留限量: GB 2763—2021[S]. 北京: 中国农业出版社, 2021.
    • Cited by

      Periodical cited type(1)

      1. 吴迪,栗云鹏,巴洪宇,杜鹃,吴惠明,张启龙,冯小宇,周德刚. 美洲型猪繁殖与呼吸综合征病毒实时荧光RT-PCR定量检测试剂盒测量不确定度研究. 中国动物检疫. 2020(05): 94-100 .

      Other cited types(2)

    Catalog

      Article views (456) PDF downloads (927) Cited by(3)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return