ZHANG Yali, GAO Qichao, DENG Jizhong, et al. Effects of reduced pesticide application on rice planthopper control by M45 multi-rotor plant protection UAV[J]. Journal of South China Agricultural University, 2021, 42(6): 36-42. DOI: 10.7671/j.issn.1001-411X.202103002
    Citation: ZHANG Yali, GAO Qichao, DENG Jizhong, et al. Effects of reduced pesticide application on rice planthopper control by M45 multi-rotor plant protection UAV[J]. Journal of South China Agricultural University, 2021, 42(6): 36-42. DOI: 10.7671/j.issn.1001-411X.202103002

    Effects of reduced pesticide application on rice planthopper control by M45 multi-rotor plant protection UAV

    More Information
    • Received Date: January 26, 2021
    • Available Online: May 17, 2023
    • Objective 

      In order to explore the effect of reduced pesticide application on the control effect of rice planthopper by multi-rotor plant protection UAV and promote the development of reduced pesticide application technique for rice.

      Method 

      Field experiment was carried out using an M45 multi-rotor plant protection UAV for rice pesticides application. We used two spray volumes of 15.0 and 22.5 L/hm2, and three pesticide dosages of 100%, 90%, and 80% of the conventional artificial control dosage. The effect of different spray volume and reduced dosage on the droplet deposition and the control of rice planthopper were analyzed.

      Result 

      The droplet deposition in the upper part of the rice canopy was significantly higher than that in the lower part of the canopy. The differences of two spray volumes and three dosages on the droplet deposition were not significant. At the same time, the number of rice planthopper decreased significantly after one week of treatment. Under the condition of the same spray volume, the effect of reduced dosage on the control effect of rice planthopper was not significant. Rice spray dosage of 80% of manual application met the requirement of rice planthopper control.

      Conclusion 

      The spray dosage of 80% can be considered as feasible dosage in the UAV application for rice. The results provide useful reference for promoting the reductions of pesticide application for rice and the operating cost of rice plant protection.

    • [1]
      中商产业研究院. 2019年中国粮食种植面积和产量数据分析及2020年预测[EB/OL]. (2019-12-06)[2020-12-31]. https://www.askci.com/news/chanye/20191206/1642301155340_2.shtml.
      [2]
      广东省农业农村厅. 2019年广东省粮食产销形势分析[EB/OL]. (2020-02-13)[2020-12-31]. http://dara.gd.gov.cn/cxxsfx/content/post_2894942.html.
      [3]
      叶延琼, 章家恩, 李逸勉, 等. 1992-2010年广东省水稻主要病虫害发生动态及防控措施[J]. 湖北农业科学, 2013, 52(15): 3544-3549. doi: 10.3969/j.issn.0439-8114.2013.15.020
      [4]
      陈波, 范兵, 陈科海, 等. 基于水稻主要病虫害的发生趋势论种质资源在水稻抗性育种中的应用[J]. 现代农业科技, 2012(3): 234-236. doi: 10.3969/j.issn.1007-5739.2012.03.151
      [5]
      WANG L, LAN Y, ZHANG Y, et al. Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China[J]. Sensors, 2019, 19: 642. doi: 10.3390/s19030642
      [6]
      ADITYA S N, PROF S C K. Adoption and utilization ofdrones for advanced precision farming: A review[J]. International Journal on Recent and Innovation Trends in Computing and Communication, 2016, 4(5): 563-565.
      [7]
      李飞, 韩冲冲, 李保同. 阿维菌素无人机喷施的沉积特征及防效研究[J]. 江西农业大学学报, 2019, 41(5): 914-923.
      [8]
      缪建锟, 齐枫, 杨皓, 等. 植保无人机喷施30%肟菌·戊唑醇悬浮剂防治稻瘟病、稻曲病效果评价[J]. 农药, 2020, 59(9): 680-683.
      [9]
      姚伟祥, 兰玉彬, 郭爽, 等. 赣南山地柑桔园有人驾驶直升机喷雾作业雾滴沉积效果[J]. 中国南方果树, 2020, 49(2): 13-18.
      [10]
      薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278.
      [11]
      QIN W C, QIU B J, XUE X Y, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Protection, 2016, 85: 79-88. doi: 10.1016/j.cropro.2016.03.018.
      [12]
      陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(9): 40-46. doi: 10.11975/j.issn.1002-6819.2016.09.006
      [13]
      漆海霞, 陈鹏超, 兰玉彬, 等. 不同电动植保无人机稻田雾滴沉积分布试验研究[J]. 农机化研究, 2019, 41(9): 147-151. doi: 10.3969/j.issn.1003-188X.2019.09.027
      [14]
      张海艳, 兰玉彬, 文晟, 等. 植保无人机水稻田间农药喷施的作业效果[J]. 华南农业大学学报, 2019, 40(1): 116-124. doi: 10.7671/j.issn.1001-411X.201802028
      [15]
      CHEN P C, LAN Y B, HUANG X Y, et al. Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle[J]. Agronomy, 2020, 10(2). doi: 10.3390/agronomy10020303.
      [16]
      中国农药工业协会. 植保无人飞机防治水稻病虫害施药指南: T/CCPIA020—2019[S]. 北京: 中国农药工业协会, 2019.
      [17]
      彭国雄, 张淑玲, 夏玉先. 金龟子绿僵菌CQMa421农药及应用情况[J]. 中国生物防治学报, 2020, 36(6): 850-857.
      [18]
      农业部全国农业技术推广服务中心. 稻飞虱测报调查规范: GB/T15794.4—2009[S]. 北京: 中国标准出版社, 2009.
      [19]
      农业农村部农药检定所. 农药田间药效试验准则: GB/T17980.4—2000[S]. 北京: 中国标准出版社, 2000.
    • Cited by

      Periodical cited type(6)

      1. 贾鹿,赵磊,凌飞,李广亚. 基于归一化RBFNN的油井动液面测量数据异常辨识. 电子测量技术. 2024(24): 188-194 .
      2. 李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 .
      3. 郑显润,郑鹏,王文秀,程亚红,苏宇锋. 基于多尺度特征提取深度残差网络的水稻害虫识别. 华南农业大学学报. 2023(03): 438-446 . 本站查看
      4. 邓雪阳,邓达平,苏万靖. 基于并行深度卷积神经网络的舰船通信异常数据检测研究. 舰船科学技术. 2023(15): 119-122 .
      5. 杨亚琦,李博雄,杨东霞,刘燕. 基于信息熵的异常数据判别方法. 科学技术创新. 2023(24): 194-199 .
      6. 杜肖鹏,李恺,王春辉,侯永,尹义蕾,潘守江,张凌风. 国内温室空气温湿度检测及传输技术研究进展. 农业工程技术. 2022(34): 28-34 .

      Other cited types(1)

    Catalog

      Article views (792) PDF downloads (890) Cited by(7)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return