Citation: | MA Chenlei, PEI Ziwei, LI Fusheng. Effects of irrigation method and nitrogen application on methane emission and organic carbon fraction in double-cropping rice field[J]. Journal of South China Agricultural University, 2021, 42(5): 41-49. DOI: 10.7671/j.issn.1001-411X.202101048 |
The objective was to obtain water and nitrogen management mode for methane (CH4) emission reduction, and reveal the effects of soil organic carbon fraction and methane oxidizing bacteria on CH4 emission flux from rice fields treated by different irrigation methods and nitrogen application.
Through field experiment, CH4 emission fluxes, soil organic carbon fraction contents and methane oxidizing bacteria numbers at different growth stages of double-cropping rice were determined under three irrigation methods (conventional irrigation, “thin-shallow-wet-dry” irrigation and alternate drying and wetting irrigation) and three nitrogen application methods (N1: 120 kg·hm−2 nitrogen, 20% basal fertilizer and 80% topdressing; N2: 120 kg·hm−2 nitrogen, 50% basal fertilizer and 50% topdressing; N3: 90 kg·hm−2 nitrogen, 50% basal fertilizer and 50% topdressing). The correlation relationships of CH4 emission fluxes with soil organic carbon fractions and methane oxidizing bacteria were analyzed.
The treatment of alternate drying and wetting irrigation combining with N3 had the lowest CH4 emission flux from rice fields, and CH4 emission flux at the tillering stage of late rice decreased by 70.5% compared with the treatment of conventional irrigation combining with N1. Under the alternate drying and wetting irrigation, the soil microbial biomass carbon content at the booting stage of early rice in N2 treatment increased by 23.5% compared with both N1 and N3 treatments, and the soil soluble organic carbon content at the tillering stage of late rice in N3 treatment increased by 12.0% and 12.9% compared with N1 and N2 treatments, respectively. Under the N3 treatment, conventional irrigation increased the soil readily oxidizable organic carbon content by 38.8% and 40.9% compared to “thin-shallow-wet-dry” irrigation and alternate drying and wetting irrigation at the booting stage of early rice, respectively. CH4 emission flux from double-cropping rice fields was significantly positively correlated only with soil soluble organic carbon content (r=0.55, P<0.01).
Soil soluble organic carbon content significantly affects CH4 emission fluxes from double-cropping rice fields, and alternate drying and wetting irrigation combining with N3 treatment had lower CH4 emission flux from rice fields.
[1] |
Intergovernmental panel on climate change. Climate change 2007: The physical science basis[M]. Cambridge: Cambridge University Press, 2007.
|
[2] |
王楷, 李伏生, 方泽涛, 等. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5): 1012-1020. doi: 10.11654/jaes.2016-1581
|
[3] |
李健陵. 水氮管理方式对水稻生长发育和温室气体排放的影响[D]. 北京: 中国农业科学院, 2018.
|
[4] |
ISLAM S M M, GAIHRE Y K, ISLAM M R, et al. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh[J]. Science of the Total Environment, 2020, 734: 139382. doi: 10.1016/j.scitotenv.2020.139382.
|
[5] |
马艳芹, 钱晨晨, 孙丹平, 等. 施氮水平对稻田土壤温室气体排放的影响[J]. 农业工程学报, 2016, 32(S2): 128-134.
|
[6] |
LINQUIST B A, ADVIENTO-BORBE M A, PITTELKOW C M, et al. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis[J]. Field Crops Research, 2012, 135: 10-21. doi: 10.1016/j.fcr.2012.06.007
|
[7] |
廖松婷. 东北黑土区不同种植模式下水稻田CH4、N2O排放研究[D]. 哈尔滨: 东北农业大学, 2014.
|
[8] |
展茗. 不同稻作模式稻田碳固定、碳排放和土壤有机碳变化机制研究[D]. 武汉: 华中农业大学, 2009.
|
[9] |
梁战备, 史奕, 岳进. 甲烷氧化菌研究进展[J]. 生态学杂志, 2004, 23(5): 198-205. doi: 10.3321/j.issn:1000-4890.2004.05.036
|
[10] |
韦至激, 方泽涛, 李伏生, 等. 不同灌溉模式和施氮量下稻田N2O排放与有机氮组分的关系[J]. 江苏农业科学, 2018, 46(9): 246-251.
|
[11] |
王明星. 中国稻田甲烷排放[M]. 北京: 科学出版社, 2001: 83-172.
|
[12] |
李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008.
|
[13] |
刘涛泽, 刘丛强, 张伟, 等. 喀斯特地区坡地土壤可溶性有机碳的分布特征[J]. 中国环境科学, 2009, 29(3): 248-253. doi: 10.3321/j.issn:1000-6923.2009.03.005
|
[14] |
王莹, 阮宏华, 黄亮亮, 等. 围湖造田不同土地利用方式土壤有机碳和易氧化碳[J]. 生态环境学报, 2010, 19(4): 913-918. doi: 10.3969/j.issn.1674-5906.2010.04.031
|
[15] |
周叶锋, 廖晓兰. 影响甲烷排放量的两种细菌——产甲烷细菌和甲烷氧化菌的研究进展[J]. 农业环境科学学报, 2007, 26(S1): 340-346.
|
[16] |
陈槐, 周舜, 吴宁, 等. 湿地甲烷的产生、氧化及排放通量研究进展[J]. 应用与环境生物学报, 2006, 12(5): 726-733. doi: 10.3321/j.issn:1006-687X.2006.05.029
|
[17] |
李晶, 王明星, 陈德章. 水稻田甲烷的减排方法研究及评价[J]. 大气科学, 1998, 22(3): 354-362. doi: 10.3878/j.issn.1006-9895.1998.03.11
|
[18] |
NYKANEN H, VASANDER H, HUTTUNEN J T, et al. Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland[J]. Plant and Soil, 2002, 242(1): 147-155. doi: 10.1023/A:1019658428402
|
[19] |
KONG Y H, NAGANO H, KATAI J, et al. CO2, N2O and CH4 production/consumption potential of soils under different land-use types in central Japan and eastern Hungary[J]. Soil Science and Plant Nutrition, 2013, 59(3): 455-462. doi: 10.1080/00380768.2013.775005
|
[20] |
YAO H, CONRAD R. Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy[J]. Soil Biology and Biochemistry, 1999, 31(3): 463-473. doi: 10.1016/S0038-0717(98)00152-7
|
[21] |
胡敏杰, 仝川, 邹芳芳. 氮输入对土壤甲烷产生、氧化和传输过程的影响及其机制[J]. 草业学报, 2015, 24(6): 204-212. doi: 10.11686/cyxb2014313
|
[22] |
BANERJEE B, AGGARWAL P K, PATHAK H, et al. Dynamics of organic carbon and microbial biomass in alluvial soil with tillage and amendments in rice-wheat systems[J]. Environmental Monitoring and Assessment, 2006, 119(1/2/3): 173-189.
|
[23] |
史登林, 王小利, 段建军, 等. 氮肥减量配施生物炭对黄壤稻田土壤有机碳活性组分和矿化的影响[J]. 应用生态学报, 2020, 31(12): 4117-4124.
|
[24] |
肖新, 朱伟, 肖靓, 等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J]. 农业工程学报, 2013, 29(21): 91-98. doi: 10.3969/j.issn.1002-6819.2013.21.012
|
[25] |
汤宏, 沈健林, 张杨珠, 等. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水土保持学报, 2013, 27(1): 240-246.
|
[26] |
闵航, 陈美慈, 钱泽澍. 不同栽培措施对水稻田甲烷释放、甲烷产生菌和甲烷氧化菌的影响[J]. 农村生态环境, 1993(S1): 36-39.
|
[27] |
张坚超, 徐镱钦, 陆雅海. 陆地生态系统甲烷产生和氧化过程的微生物机理[J]. 生态学报, 2015, 35(20): 6592-6603.
|