Citation: | ZENG Yuchen, GONG Lang, WANG Jingyu, et al. Development of ERA detection method for African swine fever virus based on B646L, EP402R and MGF360/505 genes[J]. Journal of South China Agricultural University, 2021, 42(5): 33-40. DOI: 10.7671/j.issn.1001-411X.202101031 |
To establish a rapid detection method of African swine fever virus (ASFV) DNA based on enzymatic recombinase amplification (ERA) technology.
Specific ERA probes and primers were designed according to the conserved sequences of B646L and EP402R genes, and MGF360/505 gene which was one of the ASFV multigene family members. Through optimizing reaction conditions, the ERA method for detecting ASFV DNA was finally established under the isothermal condition of 42 ℃.
The detection results of three methods of ERA-ASFV-B646L, ERA-ASFV-EP402R and ERA-ASFV-MGF could be obtained within 16, 7 and 13 min respectively. The copy number detection limitation of positive sample was all 102 μL−1. The coincidence rate was 100% compared with the common method in the technical standard of ASFV diagnosis in China.
The established ERA method can be used for rapid detection of ASFV, and provides an effective rapid detection method for epidemiological investigation and field detection.
[1] |
ZHAO D, LIU R, ZHANG X, et al. Replication and virulence in pigs of the first African swine fever virus isolated in China[J]. Emerging Microbes & Infections, 2019, 8(1): 438-447.
|
[2] |
郗永义, 林艳丽, 王友亮. 非洲猪瘟研究进展[J]. 生物技术通讯, 2019, 30(3): 449-454.
|
[3] |
BORCA M V, CARRILLO C, ZSAK L, et al. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine[J]. Journal of Virology, 1998, 72(4): 2881-2889. doi: 10.1128/JVI.72.4.2881-2889.1998
|
[4] |
O'DONNELL V, HOLINKA L G, GLADUEL D P, et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus[J]. Journal of Virology, 2015, 89(11): 6048-6056. doi: 10.1128/JVI.00554-15
|
[5] |
林彦星, 曹琛福, 杨俊兴, 等. 非洲猪瘟病毒实验室诊断方法的研究进展[J]. 中国兽医学报, 2018, 38(10): 2020-2024.
|
[6] |
郭正洋, 刘钟栋, 刘小青, 等. 重组酶聚合酶扩增技术的研究进展[J]. 食品科技, 2018, 43(9): 55-59.
|
[7] |
TWISTDX. Appendix to the TwistAmpTM reaction kit manuals[Z/OL]. [2014-08-14]. http://www.twistdx.co.uk/images/uploads/docs/Appendix.pdf.
|
[8] |
中国动物卫生与流行病学中心. 非洲猪瘟诊断技术: GB/T 18648—2020[S]. 北京: 中国标准出版社, 2020: 1-32.
|
[9] |
任丽萍, 斯张国, 高宏. 非洲猪瘟流行现状、存在问题及防控[J]. 畜牧兽医科学(电子版), 2020(8): 66-67.
|
[10] |
杨汉春. 非洲猪瘟的现实、挑战与策略[J]. 兽医导刊, 2019(19): 9-10.
|
[11] |
张丽, 罗玉子, 王涛, 等. 非洲猪瘟诊断技术发展现状与需求分析[J]. 中国农业科技导报, 2019, 21(9): 1-11.
|
[12] |
张蕾, 董春娜, 李静, 等. 非洲猪瘟病毒间接ELISA抗体检测方法的建立[J]. 病毒学报, 2020, 36(4): 670-674.
|
[13] |
王林, 高晓龙, 吴迪, 等. 非洲猪瘟病毒实时荧光LAMP检测方法的建立与应用[J]. 中国兽药杂志, 2020, 54(8): 1-8.
|
[14] |
李林, 刘拂晓, 樊晓旭, 等. 非洲猪瘟病毒实时荧光RPA快速检测方法的建立[J]. 中国动物检疫, 2017, 34(8): 87-91.
|
[15] |
WANG R, ZHANG F, WANG L, et al. Instant, visual, and instrument-free method for on-site screening of GTS 40-3-2 soybean based on body-heat triggered recombinase polymerase amplification[J]. Analytical Chemistry, 2017, 89(8): 4413-4418. doi: 10.1021/acs.analchem.7b00964
|
[16] |
XIA S, CHEN X. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA[J]. Cell Discovery, 2020, 6(1). doi: 10.1038/s41421-020-0175-x.
|