• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
YANG Mingxin, GAO Peng, CHEN Wenbin, et al. Research of Brassica chinensis var. parachinensis under water stress based on machine learning[J]. Journal of South China Agricultural University, 2021, 42(5): 117-126. DOI: 10.7671/j.issn.1001-411X.202101019
Citation: YANG Mingxin, GAO Peng, CHEN Wenbin, et al. Research of Brassica chinensis var. parachinensis under water stress based on machine learning[J]. Journal of South China Agricultural University, 2021, 42(5): 117-126. DOI: 10.7671/j.issn.1001-411X.202101019

Research of Brassica chinensis var. parachinensis under water stress based on machine learning

More Information
  • Received Date: January 11, 2021
  • Available Online: May 17, 2023
  • Objective 

    Brassica chinensis var. parachinensis was used as the experimental object to study the change rule of water stress during growth process based on canopy temperature, and the machine learning method was used for predicting the photosynthetic rate based on crop water stress index (CWSI) and photosynthetically active radiation.

    Method 

    During the test, the experiment adopted different field capacities for B. chinensis var. parachinensis at the vegetative growth stage (V stage) and reproductive growth stage (R stage), collected the canopy temperature, air temperature and humidity data, established non-transpiration-baseline (upper limit equation), non-water-stress-baseline (lower limit equation), and calculated CWSI by empirical formulation. Cluster method of density-based spatial clustering of application with noise and air temperature were used to study the upper limit distribution of canopy temperature minus air temperature of B. chinensis var. parachinensis, and the fixed values were selected as the upper limit. Based on the CWSI empirical formulation, CWSI was calculated using the non-transpiration-baselines with different temperature fixed values to verify the clustering effect. In order to obtain the photosynthetic rate more easily, four machine learning methods of k-nearest neighbor (KNN), support vector regression (SVR), extreme gradient boosting (XGBoost) and random forest (RF) were used for prediction, and the prediction effects were compared.

    Result 

    Under different field capacities, CWSI could better monitor the water stress status of B. chinensis var. parachinensis. Through cluster analysis, the upper limit of canopy temperature minus air temperature at V stage and R stage was classified into two clusters, and the cluster centers were 3.4 and 4.2 ℃, respectively, which were significantly correlated with the values calculated by the empirical formula of CWSI, indicating that it was feasible to use a fixed value as the upper limit of canopy temperature minus air temperature in B. chinensis var. parachinensis. The prediction models of KNN, SVM, XGBoost and RF all achieved good results, and the correlation coefficients were 0.873, 0.877, 0.887 and 0.863, respectively.

    Conclusion 

    Machine learning can be used for predicting the photosynthetic rate of B. chinensis var. parachinensis, avoid the use of large and cumbersome instruments, reduce the damage to the leaves of B. chinensis var. parachinensis, and reduce the measurement time.

  • [1]
    卢宇鹏, 夏岩石, 温少波, 等. 不同熟性菜心品质性状的多样性分析[J]. 广东农业科学, 2020, 47(5): 29-36.
    [2]
    叶红霞. 菜心的栽培季节和栽培方式[J]. 新农村, 2020(10): 26-27. doi: 10.3969/j.issn.1674-8409.2020.10.012
    [3]
    杨树涛, 黄永文, 刘泳涛, 等. 普宁市菜心生产特色农业气象指标研究[J]. 河南农业, 2018(11): 17-20.
    [4]
    徐燕. 土壤水分胁迫对菜心生理生化指标及气孔发育的影响[D]. 广州: 暨南大学, 2010.
    [5]
    IDSO S B, JACKSON R D, PINTER P J, et al. Normalizing the stress-degree-day parameter for environmental variability[J]. Agricultural Meteorology, 1981, 24(1): 45-55.
    [6]
    JACKSON R D, IDSO S B, REGINATO R J, et al. Canopy temperature as a crop water stress indicator[J]. Water Resources Research, 1981, 17(4): 1133-1138. doi: 10.1029/WR017i004p01133
    [7]
    JONE H G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling[J]. Agricultural and Forest Meteorology, 1999, 95(3): 139-149. doi: 10.1016/S0168-1923(99)00030-1
    [8]
    RUD R, COHEN Y, ALCHANATIS V, et al. Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status[J]. Precision Agriculture, 2014, 15(3): 273-289. doi: 10.1007/s11119-014-9351-z
    [9]
    崔晓, 许利霞, 袁国富, 等. 基于冠层温度的夏玉米水分胁迫指数模型的试验研究[J]. 农业工程学报, 2005, 25(8): 22-24. doi: 10.3321/j.issn:1002-6819.2005.08.005
    [10]
    赵福年, 王瑞君, 张虹, 等. 基于冠气温差的作物水分胁迫指数经验模型研究进展[J]. 干旱气象, 2012, 30(4): 522-528.
    [11]
    JONES H G, STOLL M, SANTOS T, et al. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine[J]. Journal of Experimental Botany, 2002, 53(378): 2249-2260. doi: 10.1093/jxb/erf083
    [12]
    BIAN J, ZHANG Z T, CHEN J Y, et al. Simplified evaluation of  cotton  water  stress  using  high  resolution  unmanned aerial vehicle thermal imagery[J]. Remote Sensing, 2019, 11(3): 267. doi: 10.3390/rs11030267.
    [13]
    王卫星, 罗锡文, 区颖刚, 等. 基于冠层温度的菜心缺水指数模型初步试验研究(英文)[J]. 农业工程学报, 2003, 19(5): 47-50. doi: 10.3321/j.issn:1002-6819.2003.05.010
    [14]
    孙道宗, 王卫星, 唐劲驰, 等. 茶树水分胁迫建模及试验[J]. 排灌机械工程学报, 2017, 35(1): 65-70. doi: 10.3969/j.issn.1674-8530.15.0249
    [15]
    张立元, 牛亚晓, 韩文霆, 等. 大田玉米水分胁迫指数经验模型建立方法[J]. 农业机械学报, 2018, 49(5): 233-239. doi: 10.6041/j.issn.1000-1298.2018.05.027
    [16]
    AGAM N, COHEN Y, ALCHANATIS V, et al. How sensitive is the CWSI to changes in solar radiation?[J]. International Journal of Remote Sensing, 2013, 34(17): 6109-6120. doi: 10.1080/01431161.2013.793873
    [17]
    KUMAR N, ADELOYE A J, SHANKAR V, et al. Neural computing modelling of the crop water stress index[J/OL]. Agricultural Water Management, 2020, 239: 1-10. [2021-01-05]. https://doi.org/10.1016/j.agwat.2020.106259.
    [18]
    KHORSANDI A, HEMMAT A, MIREEI S A, et al. Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions[J]. Agricultural Water Management, 2018, 204: 222-233. doi: 10.1016/j.agwat.2018.04.012
    [19]
    屈振江, 郑小华, 王景红, 等. 渭北旱塬苹果园内外温度变化特征研究[J]. 干旱区地理, 2016, 39(2): 301-308.
    [20]
    吐尔逊·买买提, 谢建华. 基于DBSCAN的农机作业轨迹聚类研究[J]. 农机化研究, 2017, 39(4): 7-11. doi: 10.3969/j.issn.1003-188X.2017.04.002
    [21]
    谢慧婷. 基于红外热成像技术的生菜缺水指标的研究[D]. 福州: 福建农林大学, 2016.
    [22]
    MATESE A, BARALDI R, BERTON A, et al. Estimation of water stress in grapevines using proximal and remote sensing methods[J]. Remote Sensing, 2018, 10(1): 114. doi: 10.3390/rs10010114.
    [23]
    ZHANG L Y, NIUY X, ZHANG H H, et al. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring[J]. Frontiers in Plant Science, 2019, 10: 1270. doi: 10.3389/fpls.2019.01270.
    [24]
    SONG X Y, ZHOU G S, HE Q J, et al. Stomatal limitations to photosynthesis and their critical water conditions in different growth stages of maize under water stress[J/OL]. Agricultural Water Management, 2020, 241: 1-12. [2021-01-05]. https://doi.org/10.1016/j.agwat.2020.106330.
    [25]
    刘煦. 林下参种植光环境的动态预测与评价研究[D]. 长春: 吉林大学, 2014.
    [26]
    陈硕博. 无人机多光谱遥感反演棉花光合参数与水分的模型研究[D]. 杨凌: 西北农林科技大学, 2019.
    [27]
    陈俊英, 陈硕博, 张智韬, 等. 无人机多光谱遥感反演花蕾期棉花光合参数研究[J]. 农业机械学报, 2018, 49(10): 230-239. doi: 10.6041/j.issn.1000-1298.2018.10.026
    [28]
    宋飞扬, 铁治欣, 黄泽华, 等. 基于KNN-LSTM的PM_(2.5)浓度预测模型[J]. 计算机系统应用, 2020, 29(7): 193-198.
    [29]
    BOTULA Y D, NEMES A, MAFUKA P, et al. Prediction of water retention of soils from the humid tropics by the nonparametric  k-nearest  neighbor  approach[J]. Vadose Zone Journal, 2013, 12(2). doi: 10.2136/vzj2012.0123.
    [30]
    MOHAMMADI B, MEHDIZADEH S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm[J/OL]. Agricultural Water Management, 2020, 237: 1-13. [2020-01-03]. https://doi.org/10.1016/j.agwat.2020.106145.
    [31]
    WANG T T, YANG C H, LIANG J. Soil pH value prediction using UWB radar echoes based on XGBoost[C]//CSPS. International Conference in Communications, Signal Processing, and Systems. Urumqi: CSPS, 2019: 1941-1947.
    [32]
    白婷, 丁建丽, 王敬哲. 基于机器学习算法的土壤有机质质量比估算[J]. 排灌机械工程学报, 2020, 38(8): 829-834.
    [33]
    罗清元, 杨丹, 刘丽娜, 等. 基于不同环境下的河南省典型区域土壤田间持水量研究[J]. 节水灌溉, 2019, 4929(6): 35-38. doi: 10.3969/j.issn.1007-4929.2019.06.009
    [34]
    MARTIN E, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//AAAI. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). California: AAAI, 1996: 226-231.
    [35]
    ALTMAN N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3): 175-185.
    [36]
    CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [37]
    CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]//ACM. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. California: ACM, 2016: 785-794.
    [38]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324

Catalog

    Article views (797) PDF downloads (900) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return