Citation: | LIN Qing, WU Xibo, TENG Jinyan, et al. Genetic parameters and genetic progress of economically important traits in a long-term selected Duroc pig population[J]. Journal of South China Agricultural University, 2021, 42(5): 1-7. DOI: 10.7671/j.issn.1001-411X.202101016 |
To estimate the genetic parameters of three economic traits in a long-term selection population, analyze their genetic progress, and investigate the factors including long-term selection affecting the genetic parameters in the practical breeding population.
A total of 15 760 growth performance records of Duroc pigs were collected in a core breeding field from 2003 to 2018. Using DMUAI module and DMU4 module of DMU software, a multi-trait animal model was used to estimate the genetic parameters and breeding values of three important economic traits. We estimated the genetic parameters of annual accumulative population to evaluate the change of genetic parameters during the long-term selection.
The estimates of heritability for three important economic traits including age, backfat thickness and loin muscle area at 100 kg body weight were 0.354, 0.477 and 0.479, respectively. All three traits had medium-high heritability. There were low correlations among three economic traits. The genetic and phenotypic correlations ranged from −0.110 to 0.039 and from −0.076 to 0.082, respectively. Among three traits, age at 100 kg body weight had relatively greater genetic progress in long-term selection, while backfat thickness at 100 kg body weight and loin muscle area at 100 kg body weight had relatively less genetic progress. Furthermore, the additive genetic variance changed in different degrees for three economic traits by estimating the genetic parameters of the annual accumulative population.
These traits of this Duroc pig population had the medium-high estimates of heritability and low correlations. Moreover, long-term selection and introduction could lead to the changing of genetic parameters. Therefore, genetic parameters should be estimated timely to obtain accurate genetic evaluation for accelerating the genetic improvement in breeding practice.
[1] |
李学武, 王瑞军, 王志英, 等. 家畜遗传评估方法研究进展[J]. 中国农业大学学报, 2020, 25(2): 54-60.
|
[2] |
乔国艳, 袁超, 郭婷婷, 等. 不同数据结构和动物模型对高山美利奴羊经济性状遗传参数估计的比较[J]. 中国畜牧兽医, 2020, 47(2): 531-543.
|
[3] |
DONG L, TAN C, CAI G, et al. Estimates of variance components and heritability using different animal models for growth, backfat, litter size, and healthy birth ratio in Large White pigs[J]. Canadian Journal of Animal Science, 2020, 100(2): 330-336. doi: 10.1139/cjas-2019-0136
|
[4] |
张胜利, 杨秀文, 靳明武, 等. 遗传参数不同估计方法的比较[J]. 遗传, 1995, 17(6): 21-23. doi: 10.3321/j.issn:0253-9772.1995.06.006
|
[5] |
ALENCARIANO J D S F, ELIAS N M, CLAUDIO N C, et al. Effects of the number of animals in the numerator relationship matrix on variance components for milk yield using restricted maximum likelihood and Bayesian methods[J]. Revista Brasileira de Zootecnia, 2009, 38(8): 1468-1477. doi: 10.1590/S1516-35982009000800011
|
[6] |
BEERLI P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters[J]. Bioinformatics, 2006, 22(3): 341-345. doi: 10.1093/bioinformatics/bti803
|
[7] |
高虹, 邱小田, 王长存, 等. 我国杜洛克、长白、大白猪区域性联合遗传评估研究[J]. 畜牧兽医学报, 2018, 49(12): 2567-2575. doi: 10.11843/j.issn.0366-6964.2018.12.005
|
[8] |
SU H, GOLDEN B, HYDE L, et al. Genetic parameters for carcass and ultrasound traits in Hereford and admixed Simmental beef cattle: Accuracy of evaluating carcass traits[J]. Journal of Animal Science, 2017, 95(11): 4718-4727. doi: 10.2527/jas2017.1865
|
[9] |
姚天雄, 陈冬, 吴珍芳, 等. 大白和长白猪大样本群体的繁殖性状遗传参数估计及影响因素分析[J]. 畜牧兽医学报, 2019, 50(11): 2195-2207. doi: 10.11843/j.issn.0366-6964.2019.11.003
|
[10] |
HOLM B, BAKKEN M, KLEMETSDAL G, et al. Genetic correlations between reproduction and production traits in swine[J]. Journal of Animal Science, 2004, 82(12): 3458-3464. doi: 10.2527/2004.82123458x
|
[11] |
WOLF J, ZAKOVA E, GROENEVELD E. Genetic parameters for a joint genetic evaluation of production and reproduction traits in pigs[J]. Czech Journal of Animal Science, 2005, 50(3): 96-103.
|
[12] |
LOPEZ B I M, SONG C, SEO K. Genetic parameters and trends for production traits and their relationship with litter traits in Landrace and Yorkshire pigs[J]. Animal Science Journal, 2018, 89(10): 1381-1388. doi: 10.1111/asj.13090
|
[13] |
HOQUE M A, KADOWAKI H, SHIBATA T, et al. Maternal and direct genetic parameters for production traits and maternal correlations among production and feed efficiency traits in Duroc pigs[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(7): 961-966. doi: 10.5713/ajas.2008.70641
|
[14] |
张勤. 我国猪育种现状与挑战[J]. 北方牧业, 2019(10): 12-13.
|
[15] |
SHARMA D, JOHARI D C, KATARIA M C, et al. Factors affecting direct and correlated responses in a White Leghorn population under long term selection for egg number[J]. British Poultry Science, 1998, 39(1): 31-38. doi: 10.1080/00071669889358
|
[16] |
R CORE TEAM. R: A language and environment for statistical computing[DB/CD]. R Foundation for Statistical Computing, 2019.
|
[17] |
MADSEN P, JENSEN J, LABOURIAU R, et al. DMU:A package for analyzing multivariate mixed models in quantitative genetics and genomics[C]//ASAS. 10th World Congress on Genetics Applied to Livestock Production, Vancouver:American Society of Animal Science, 2014.
|
[18] |
曹洪战, 吴常信, 师守堃. 利用MTDFREML估计大约克双肌臀种猪活体背膘厚遗传力时固定效应及水平数的确定[J]. 中国畜牧杂志, 2004, 40(3): 34-36. doi: 10.3969/j.issn.0258-7033.2004.03.014
|
[19] |
DARFOUR-ODURO K A, NAAZIE A, AHUNU B K, et al. Genetic parameter estimates of growth traits of indigenous pigs in Northern Ghana[J]. Livestock Science, 2009, 125(2): 187-191.
|
[20] |
JIAO S, MALTECCA C, GRAY K A, et al. Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: I: Genetic parameter estimation and accuracy of genomic prediction[J]. Journal of Animal Science, 2014, 92(6): 2377-2386. doi: 10.2527/jas.2013-7338
|
[21] |
LOPEZ B I M, SEO K S, SONG C W, et al. Estimation of genetic parameters and accuracy of genomic prediction for production traits in Duroc pigs[J]. Czech Journal of Animal Science, 2019, 64(4): 160-165. doi: 10.17221/150/2018-CJAS
|
[22] |
庄站伟, 付帝生, 丁荣荣, 等. 美系杜洛克种猪体尺性状遗传参数估计及其与生长性状的关系研究[J]. 广东农业科学, 2018, 45(7): 121-125.
|
[23] |
曹建新, 齐莹莹, 王钰龙, 等. 基于多性状动物模型估计大白猪、长白猪生长性状的遗传参数[J]. 畜牧与兽医, 2017, 49(11): 154-156.
|
[24] |
ZHANG Z, ZHANG H, PAN R, et al. Genetic parameters and trends for production and reproduction traits of a Landrace herd in China[J]. Journal of Integrative Agriculture, 2016, 15(5): 1069-1075. doi: 10.1016/S2095-3119(15)61105-4
|
[25] |
刘榜, 蒋腾飞, 樊斌, 等. 外种猪遗传改良进展与发展趋势[J]. 猪业科学, 2011, 28(9): 106-108. doi: 10.3969/j.issn.1673-5358.2011.09.035
|
[26] |
楼平儿, 华坚青. 应用BLUP法选择加系约克夏种猪的遗传进展分析[J]. 畜牧与兽医, 2002, 34(10): 16-17. doi: 10.3969/j.issn.0529-5130.2002.10.009
|
[27] |
CHATTERJEE R N, MISRA B S, SINGH H N. Time trends of genetic parameters in a White Leghorn population subjected to long term single trait selection[J]. Indian Journal of Animal Sciences, 2002, 72(6): 465-468.
|
[28] |
丁向东, 王长存, 周子文, 等. 生猪遗传改良计划实施以来我国猪主要经济性状进展分析[J]. 中国畜牧杂志, 2021, 57(1): 224-230.
|