LI Ting, DENG Shunsheng, LIU Yanming, et al. Diversity of endophytic bacteria of Dendrobium officinale under different growth conditions and screening of active strains[J]. Journal of South China Agricultural University, 2021, 42(5): 80-86. DOI: 10.7671/j.issn.1001-411X.202101005
    Citation: LI Ting, DENG Shunsheng, LIU Yanming, et al. Diversity of endophytic bacteria of Dendrobium officinale under different growth conditions and screening of active strains[J]. Journal of South China Agricultural University, 2021, 42(5): 80-86. DOI: 10.7671/j.issn.1001-411X.202101005

    Diversity of endophytic bacteria of Dendrobium officinale under different growth conditions and screening of active strains

    More Information
    • Received Date: January 04, 2021
    • Available Online: May 17, 2023
    • Objective 

      To compare and analyze the distribution characteristics of endophytic bacteria in wild and cultivated Dendrobium officinale, and screen active strains with strong colonization ability. To lay the foundation for improving the domestication of wild D. officinale and the quality of medicinal materials.

      Method 

      The endophytic bacteria were isolated from the root, stem, leaf of D. officinale by tissue block separation method, and 16S rDNA sequence and phylogenetic tree were used to identify the isolated strains. The probioticactive bacterial strains with the abilities of phosphate-solubilizing, potassium-dissolving, nitrogen-fixing, siderophore-synthesizing, IAA-producting and antagonistic activity of pathogen were screened in vitro. The colonization dynamics of endophytic bacteria in tissue culture seedlings were observed after backgrafting and separation.

      Result 

      A total of 285 endophytic bacteria strains were isolated from D. officinale, among which 217 were isolated from wild D. officinale, which were classified into three phylums and nine genera. Bacillus and Acinetobacter strains accounted for 79.26% and 8.76% of the total isolated strains respectively, and were the dominant bacteria. Only 68 endophytic bacteria strains were isolated from the cultivated D.officinale, which were classified into one phylum three genera, Burkholderia and Escherichia accounted for 54.41% and 30.88% of the total isolated strains respectively, and were the dominant bacteria. Only Pantoea was distributed in both wild and cultivated D. officinale. The number of endophytic species (9) and diversity index (0.85) of wild D. officinale were obviously higher than those of cultivated D. officinale (3 and 0.61 respectively). A total of 38 strains were obtained by active screening, accounting for 45% of the screened strains and three of four strains of endophytic bacteria from wild D. officinale showed good colonization in artificial tissue culture seedlings.

      Conclusion 

      The biodiversity and community structure of endophytic bacteria of wild and artificially cultivated D. officinale are obviously different and the endophytic bacteria contains abundant potential of growth promotion.

    • [1]
      ZHANG J, GUO Y, SI J, et al. A Polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3k/AKT and MAPK pathways[J]. International Journal of Biological Macromolecules, 2017, 104: 1-10. doi: 10.1016/j.ijbiomac.2017.05.169
      [2]
      CHEN H, NIE Q, HU J, et al. Metabolism amelioration of Dendrobium officinale polysaccharide on type Ⅱ diabetic rats[J]. Food Hydrocolloids, 2020, 102: 105582. doi: 10.1016/j.foodhyd.2019.105582
      [3]
      李朝锋. 广西铁皮石斛产业发展概况及对策研究[D]. 南宁: 广西大学. 2019.
      [4]
      张明, 刘宏源. 药用石斛产业的发展现状及前景[J]. 中国现代中药, 2010, 12(10): 8-11. doi: 10.3969/j.issn.1673-4890.2010.10.003
      [5]
      李桂锋, 李进进, 许继勇, 等. 铁皮石斛研究综述[J]. 中药材, 2010, 33(1): 150-153.
      [6]
      庞璐, 赵兴兵, 吴维佳, 等. 珍贵濒危药材: 铁皮石斛栽培技术[J]. 企业技术开发, 2011, 30(17): 122-123.
      [7]
      陈燕兰, 钟淳菲, 徐雅囡, 等. 不同地区铁皮石斛的品质差异研究[J]. 食品与发酵工业, 2020, 46(8): 123-130.
      [8]
      马旖旎. 不同区域铁皮石斛成分差异分析与指纹图谱建立研究[D]. 杭州: 浙江理工大学, 2017.
      [9]
      邱道寿, 刘晓津, 郑锦荣, 等. 棚栽铁皮石斛的主要病害及其防治[J]. 广东农业科学, 2011, 38(S1): 118-120.
      [10]
      陈晓梅, 闫浩利, 王春兰, 等. 菌根真菌Mycena sp. 对铁皮石斛生长和多糖化学性质的影响[J]. 中国科学: 生命科学, 2016, 46(7): 872-879.
      [11]
      HARDOIM P R, VAN OVERBEEK L S, BERG G, et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews, 2015, 79(3): 293-320. doi: 10.1128/MMBR.00050-14
      [12]
      RASMUSSEN H. Terrestrial orchids: From seed to mycotrophic plant[M]. Oxford: Cambridge University Press, 1995: 25-30.
      [13]
      徐超, 刘国华, 张红岩, 等. 优良共生真菌对铁皮石斛的促生机制[J]. 江苏农业科学, 2017, 45(23): 161-162.
      [14]
      李骜. 华石斛根部可培养内生细菌分离鉴定及其促生研究[D]. 海口: 海南大学, 2015.
      [15]
      龙云川, 陈轩, 周少奇. 高产铁载体根际菌的筛选鉴定及硒活化特性评价[J]. 生物技术进展, 2017, 7(5): 402-408.
      [16]
      谢华蓉. 广藿香内生真菌多样性及其在青枯病生物防治中的作用[D]. 广州: 广东药科大学, 2017.
      [17]
      张萍, 宋希强. 兰科植物内生细菌物种多样性及其促生机理研究进展[J]. 热带亚热带植物学报, 2012, 20(1): 92-98. doi: 10.3969/j.issn.1005-3395.2012.01.017
      [18]
      BENIZRI E, BAUDOIN E, GUEKCRT A. Root colonization by inoculated plant growth promoting rhizobacteria[J]. Biocontrol Science and Technology, 2001, 11(5): 557-574. doi: 10.1080/09583150120076120
    • Related Articles

      [1]GUO Qinli, SU Licheng, ZHENG Fenglin, XIE Shanyan, WU Daoming, ZENG Shucai. Response of growth and physiological characteristics of Pennisetum hydridum to water content change in dredged soil[J]. Journal of South China Agricultural University, 2024, 45(2): 227-236. DOI: 10.7671/j.issn.1001-411X.202307006
      [2]YANG Linlin, ZHANG Tao, YANG Limin, HAN Mei. Correlation analyses of ecological factors, ginsenoside contents and expression of associated key enzymes in Panax ginseng leaves[J]. Journal of South China Agricultural University, 2018, 39(3): 39-47. DOI: 10.7671/j.issn.1001-411X.2018.03.007
      [3]KUANG Lei, DENG Xiaomei, YU Fei, LIU Xiaorui, ZHANG Shuo, CHEN Xiaoyang. Effects of fertilization on the growth of Zenia insignis container seedlings[J]. Journal of South China Agricultural University, 2014, 35(6): 79-82. DOI: 10.7671/j.issn.1001-411X.2014.06.015
      [4]MENG Fanli, SU Xiaotian, ZHENG Yinan. Effects of Ginsenoside Rb3 on Antihyperglycemia and Antioxidation in Diabetic Mice[J]. Journal of South China Agricultural University, 2013, 34(4): 553-557. DOI: 10.7671/j.issn.1001-411X.2013.04.019
      [5]SHEN Bin, HAN Yutian, LU Hongmei, NIU Xiaotian, LI Ziping, ZHAO Chaoyang, WANG Guiqin. Effects of Ala-Gln on Growth and Feed Intake of Cyprinus carpio var.jian Reared at Different Stocking Densities[J]. Journal of South China Agricultural University, 2013, 34(2): 241-247. DOI: 10.7671/j.issn.1001-411X.2013.02.022
      [6]CHEN Yong, ZHOU Hong-qi. Effect of Chitosan on Growth and Dietary Digestibility of Carassius auratus gibelio[J]. Journal of South China Agricultural University, 2012, 33(2): 230-234. DOI: 10.7671/j.issn.1001-411X.2012.02.023
      [7]XIAN Gan-biao,XUE Li,LIANG Li-li,REN Xiang-rong,CAO He,LI Guo-ping,LIANG Yong-qiang. Growth and Soil Nutrient Characteristics of Three Young Plantation Types in Yunyong Forest Farm, Foshan[J]. Journal of South China Agricultural University, 2007, 28(4): 119-121. DOI: 10.7671/j.issn.1001-411X.2007.04.029
      [8]ZHU Xiao tong,FU Wei long. Effect of Avian Pancreatic Polypeptide on the Growth of Yuehuang Cocks[J]. Journal of South China Agricultural University, 2002, 23(2): 65-69. DOI: 10.7671/j.issn.1001-411X.2002.02.019
      [9]GAO Ping,FU Wei long,XI Fa jiang,CHEN Yong sheng. Effects of Crude Pig Pancreatic Polypeptide on Serum Protein Concentration and the Growth of Post Weanling Pigs[J]. Journal of South China Agricultural University, 2000, (4): 65-67. DOI: 10.7671/j.issn.1001-411X.2000.04.020
      [10]ZHENG Hua,FU Wei-long. The Effects of Casein Hydrolysates on Growth and Immune Function of Mouse[J]. Journal of South China Agricultural University, 2000, (3): 71-74. DOI: 10.7671/j.issn.1001-411X.2000.03.019

    Catalog

      Article views (813) PDF downloads (822) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return