• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHANG Min, WANG Zhijun, LI Kan, et al. Regulatory role of circRIPK2 in proliferation and differentiation of chicken primary myoblasts[J]. Journal of South China Agricultural University, 2021, 42(5): 19-26. DOI: 10.7671/j.issn.1001-411X.202011029
Citation: ZHANG Min, WANG Zhijun, LI Kan, et al. Regulatory role of circRIPK2 in proliferation and differentiation of chicken primary myoblasts[J]. Journal of South China Agricultural University, 2021, 42(5): 19-26. DOI: 10.7671/j.issn.1001-411X.202011029

Regulatory role of circRIPK2 in proliferation and differentiation of chicken primary myoblasts

More Information
  • Received Date: November 24, 2020
  • Available Online: May 17, 2023
  • Objective 

    To explore the function and molecular mechanism of circRIPK2 on the growth of chicken skeletal muscle.

    Method 

    The convergent and divergent primers were designed according to the back-splicing site, and the circular structure of circRIPK2 was verified by Sanger sequencing. RT-PCR was used to explore the expression level of circRIPK2 at different developmental stages. The circRIPK2 overexpression vector was constructed. The effect of circRIPK2 on the proliferation and differentiation of chicken primary myoblasts were detected using EdU, flow cytometry and RT-PCR technology.

    Result 

    The electrophoresis of PCR product and Sanger sequencing proved the existence of circRIPK2. RT-PCR result showed that comparing with control, overexpression of circRIPK2 up-regulated the mRNA expression of cell cycle-inhibiting gene p21by 20%, down-regulated the mRNA expressions of cell cycle-promoting genes Cyclin B2, Cyclin D1, Cyclin D2 and PCNA by 39%, 22%, 29% and 45% respectively, and up-regulated the mRNA expressions of differentiation marker genes MyHC, MYOG and Myomakerby 39%, 56% and 25% respectively. The EdU assay and flow cytometry analysis also indicated that circRIPK2 inhibited cell proliferation.

    Conclusion 

    CircRIPK2 may inhibit myoblast proliferation and promote myoblast differentiation, thus affecting the growth and development of chicken skeletal muscle.

  • [1]
    LANDER E S, LINTON L M, BIRREN B, et al. Initial sequencing and analysis of the human genome[J]. Nature, 2011, 409(6822): 860-921.
    [2]
    WU Q, WANG Y, CAO M, et al. Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm[J]. Proceedings of the National Academy of Sciences of the United States, 2012, 109(10): 3938-3943. doi: 10.1073/pnas.1117815109
    [3]
    YANG D, YANG K, YANG M, et al. Circular RNA in aging and age-related diseases[J]. Advances in Experimental Medicine and Biology, 2018, 1086: 17-35.
    [4]
    CHEN L, YANG L. Regulation of circRNA biogenesis[J]. RNA Biology, 2015, 12(4): 381-388. doi: 10.1080/15476286.2015.1020271
    [5]
    MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338. doi: 10.1038/nature11928
    [6]
    LI Z, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nature Structural & Molecular Biology, 2015, 22(3): 256-264.
    [7]
    HUANG A, ZHENG H, WU Z, et al. Circular RNA-protein interactions: Functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503-3517. doi: 10.7150/thno.42174
    [8]
    LEGNINI I, DI TIMOTEO G, ROSSI F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Molecular Cell, 2017, 66(1): 22-37. doi: 10.1016/j.molcel.2017.02.017
    [9]
    LI H, YANG J, WEI X, et al. CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J]. Journal of Cellular Physiology, 2018, 233: 4643-4651. doi: 10.1002/jcp.26230
    [10]
    WEI X, LI H, YANG J, et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p[J]. Cell Death & Disease, 2017, 8(10): e3153.
    [11]
    OUYANG H, CHEN X, WANG Z, et al. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens[J]. DNA Research, 2018, 25(1): 71-86.
    [12]
    LI H, WEI X, YANG J, et al. circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a[J]. Molecular Therapy Nucleic Acids, 2018, 11: 272-283. doi: 10.1016/j.omtn.2018.02.012
    [13]
    GONG Q, LONG Z, ZHONG F, et al. Structural basis of RIP2 activation and signaling[J]. Nature Communications, 2018, 9(1): 4993. doi: 10.1038/s41467-018-07447-9
    [14]
    MAGALHAES J G, LEE J, GEDDES K, et al. Essential role of RIP2 in the modulation of innate and adaptive immunity triggered by Nodl and Nod2 ligands[J]. European Journal of Immunology, 2011, 41(5): 1445-1455. doi: 10.1002/eji.201040827
    [15]
    MINCHENKO D O, DAVYDOV V V, BUDREIKO O A, et al. The expression of CCN2, IQSEC, RSPO1, DNAJC15, RIPK2, IL13RA2, IRS1, and IRS2 genes in blood of obese boys with insulin resistance[J]. Fiziolohichnyi Zhurnal, 2015, 61(1): 10-18.
    [16]
    ZHOU W, CAI Z, LIU J, et al. Circular RNA: Metabolism, functions and interactions with proteins[J]. Molecular Cancer, 2020, 19(1): 172. doi: 10.1186/s12943-020-01286-3
    [17]
    高永超, 王爽, 王静, 等. 环状RNA在神经系统疾病中的研究进展[J]. 中国医药导报, 2020, 17(29): 45-47.
    [18]
    宋成创, 岳炳霖, 杨兆鑫, 等. 非编码RNA在牛骨骼肌发育中的研究进展[J]. 中国牛业科学, 2018, 44(6): 75-77.
    [19]
    钮广林. 小鼠骨骼肌发育相关环状RNA的鉴定和功能研究[D]. 北京: 中国农业科学院, 2017.
    [20]
    曹海港. 猪骨骼肌纤维类型关键circRNAs的筛选及circMYLK4的功能研究[D]. 杨凌: 西北农林科技大学, 2019.
    [21]
    MARTONE J, MARIANI D, DESIDERI F, et al. Noncoding RNAs shaping muscle[J]. Frontiers in Cell and Developmental Biology, 2019, 7: 394.
    [22]
    ZANOU N, GAILLY P. Skeletal muscle hypertrophy and regeneration: Interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways[J]. Cellular and Molecular Life Sciences, 2013, 70(21): 4117-4130. doi: 10.1007/s00018-013-1330-4
    [23]
    WANG D Z, VALDEZ M R, MCANALLY J, et al. The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development[J]. Development, 2001, 128(22): 4623-4633. doi: 10.1242/dev.128.22.4623
    [24]
    BUCKINGHAM M, RELAIX F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions[J]. Annual Review of Cell and Developmental Biology, 2007, 23(1): 645-673. doi: 10.1146/annurev.cellbio.23.090506.123438
    [25]
    YUE B, WANG J, SONG C, et al. Biogenesis and ceRNA role of circular RNAs in skeletal muscle myogenesis[J]. The International Journal of Biochemistry & Cell Biology, 2019, 117: 105621.
    [26]
    WANG Y, LI M, WANG Y, et al. A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p[J]. International Journal of Biological Macromolecules, 2019, 121: 1308-1313. doi: 10.1016/j.ijbiomac.2018.09.039
    [27]
    LI X, LI C, LIU Z, et al. Circular RNA circ-FoxO3 Inhibits myoblast cells differentiation[J]. Cells, 2019, 8(6): 616. doi: 10.3390/cells8060616
  • Cited by

    Periodical cited type(1)

    1. 高文丽,苏海兰,林凤芳,牛雨晴,朱育菁,刘波,程曦,肖荣凤. 福建省多花黄精根腐病的病原菌鉴定. 福建农业学报. 2024(05): 600-608 .

    Other cited types(0)

Catalog

    Article views (791) PDF downloads (848) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return