HUANG Guangyan, WANG Haoqiang, LI Guoling, et al. Increase of knock-in efficiency in HEK293T cells by fusing RAD18 factor to Cas9[J]. Journal of South China Agricultural University, 2021, 42(5): 8-18. DOI: 10.7671/j.issn.1001-411X.202011028
    Citation: HUANG Guangyan, WANG Haoqiang, LI Guoling, et al. Increase of knock-in efficiency in HEK293T cells by fusing RAD18 factor to Cas9[J]. Journal of South China Agricultural University, 2021, 42(5): 8-18. DOI: 10.7671/j.issn.1001-411X.202011028

    Increase of knock-in efficiency in HEK293T cells by fusing RAD18 factor to Cas9

    More Information
    • Received Date: November 24, 2020
    • Available Online: May 17, 2023
    • Objective 

      In mammalian cells, RAD51 and RAD18 are the key factors for regulating the relationship between non-homologous end joining and homology-directed repair. The purpose of this study was to explore the effects of these two factors on the knock-in (KI) efficiency in HEK293T cell lines by eSpCas9 system, and improve the KI efficiency.

      Method 

      eSpCas9-RAD51, eSpCas9-RAD18 fusion proteins and RAD51, RAD18 overexpression vectors were constructed to compare their difference of KI efficiency.

      Result 

      Only the eSpCas9-RAD18 system could significantly increase the KI efficiency of HEK293T cells, which was about 1.4~1.9 times that of the original eSpCas9 system (P<0.01). The eSpCas9-RAD51 system and overexpression ofRAD51/RAD18 did not improve the KI efficiency.

      Conclusion 

      The eSpCas9-RAD18 system constructed in this study can effectively improve the KI efficiency in HEK293T cells, and provides a novel auxiliary integration tool for gene editing, gene therapy and site-specific transgenesis.

    • [1]
      YAN S, TU Z, LIU Z, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell, 2018, 173(4): 989-1002.e13. doi: 10.1016/j.cell.2018.03.005
      [2]
      史梦然, 沈宗毅, 张楠, 等. CRISPR/Cas9系统在疾病研究和治疗中的应用[J]. 生物工程学报, 2021, 37(4): 1205-1228.
      [3]
      ZHOU H, SU J, HU X, et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice[J]. Cell, 2020, 181(3): 590-603.e16. doi: 10.1016/j.cell.2020.03.024
      [4]
      ZHANG X, LI Z, YANG H, et al. Novel transgenic pigs with enhanced growth and reduced environmental impact[J]. Elife, 2018, 7: e34286. doi: 10.7554/eLife.34286
      [5]
      钟翠丽. 制备一种共表达多个酶基因的环保型转基因猪[D]. 广州: 华南农业大学, 2018.
      [6]
      严振鑫, 徐冬一. DNA双链断裂的非同源末端连接修复[J]. 生命科学, 2014, 26(11): 1157-1165.
      [7]
      LIEBER M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annual Review of Biochemistry, 2010, 79: 181-211. doi: 10.1146/annurev.biochem.052308.093131
      [8]
      LANS H, MARTEIJN J A, VERMEULEN W. ATP-dependent chromatin remodeling in the DNA-damage response[J]. Epigenetics and Chromatin, 2012, 5: 4. doi: 10.1186/1756-8935-5-4
      [9]
      FUJITANI Y, YAMAMOTO K, KOBAYASHI I. Dependence of frequency of homologous recombination on the homology length[J]. Genetics, 1995, 140(2): 797-809. doi: 10.1093/genetics/140.2.797
      [10]
      SABERI A, HOCHEGGER H, SZUTS D, et al. RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair[J]. Molecular and Cellular Biology, 2007, 27(7): 2562-2571. doi: 10.1128/MCB.01243-06
      [11]
      BURROWS A E, ELLEDGE S J. How ATR turns on: TopBP1 goes on ATRIP with ATR[J]. Genes & Development, 2008, 22(11): 1416-1421.
      [12]
      BARKLEY L R, PALLE K, DURANDO M, et al. c-Jun N-terminal kinase-mediated Rad18 phosphorylation facilitates Polη recruitment to stalled replication forks[J]. Molecular Biology of The Cell, 2012, 23(10): 1943-1954. doi: 10.1091/mbc.e11-10-0829
      [13]
      BI X, BARKLEY L R, SLATER D M, et al. Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest[J]. Molecular and Cellular Biology, 2006, 26(9): 3527-3540. doi: 10.1128/MCB.26.9.3527-3540.2006
      [14]
      SASATANI M, XU Y, KAWAI H, et al. RAD18 activates the G2/M checkpoint through DNA damage signaling to maintain genome integrity after ionizing radiation exposure[J]. Plos One, 2015, 10(2): e0117845. doi: 10.1371/journal.pone.0117845
      [15]
      INAGAKI A, VAN CAPPELLEN W A, VAN DER LAAN R, et al. Dynamic localization of human RAD18 during the cell cycle and a functional connection with DNA double-strand break repair[J]. DNA Repair, 2009, 8(2): 190-201. doi: 10.1016/j.dnarep.2008.10.008
      [16]
      LIU T, HUANG J, CHEN J J. RAD18 lives a double life: Its implication in DNA double-strand break repair[J]. DNA Repair, 2010, 9(12): 1241-1248. doi: 10.1016/j.dnarep.2010.09.016
      [17]
      SONG J, YANG D, XU J, et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency[J]. Nature Communications, 2016, 7: 10548. doi: 10.1038/ncomms10548
      [18]
      HE X, TAN C, WANG F, et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair[J]. Nucleic Acids Research, 2016, 44(9): e85.
      [19]
      LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 2001, 25(4): 402-408.
      [20]
      NAMBIAR T S, BILLON P, DIEDENHOFEN G, et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant[J]. Nature Biotechnology, 2019, 10(1): 3395.
      [21]
      ZEMAN M K, LIN J R, FREIRE R, et al. DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis[J]. Journal of Cell Biology, 2014, 206(2): 183-197. doi: 10.1083/jcb.201311063
      [22]
      HELCHOWSKI C M, SKOW L F, ROBERTS K H, et al. A small ubiquitin binding domain inhibits ubiquitin-dependent protein recruitment to DNA repair foci[J]. Cell Cycle, 2013, 12(24): 3749-3758. doi: 10.4161/cc.26640
      [23]
      CHARPENTIER M, KHEDHER A H Y, MENORET S, et al. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair[J]. Nature Communications, 2018, 9(1): 1133. doi: 10.1038/s41467-018-03475-7
      [24]
      TRAN N T, BASHIR S, LI X, et al. Enhancement of precise gene editing by the association of Cas9 with homologous recombination factors[J]. Frontiers in Genetics, 2019, 10: 365. doi: 10.3389/fgene.2019.00365
      [25]
      REES H A, YEH W H, LIU D R. Development of hRAD51-Cas9 nickase fusions that mediate HDR without double-stranded breaks[J]. Nature Communications, 2019, 10(1): 2212. doi: 10.1038/s41467-019-09983-4
      [26]
      KURIHARA T, KOUYAMA-SUZUKI E, SATOGA M, et al. DNA repair protein RAD51 enhances the CRISPR/Cas9-mediated knock-in efficiency in brain neurons[J]. Biochemical and Biophysical Research Communications, 2020, 524(3): 621-628. doi: 10.1016/j.bbrc.2020.01.132
      [27]
      TAKAYAMA K, IGAI K, HAGIHARA Y, et al. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system[J]. Nucleic Acids Research, 2017, 45(9): 5198-5207. doi: 10.1093/nar/gkx130
      [28]
      PAFFETT K S, CLIKEMAN J A, PALMER S, et al. Overexpression of RAD51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths[J]. DNA Repair, 2005, 4(6): 687-698. doi: 10.1016/j.dnarep.2005.03.003
      [29]
      KIM P M, ALLEN C, WAGENER B M, et al. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells[J]. Nucleic Acids Research, 2001, 29(21): 4352-4360. doi: 10.1093/nar/29.21.4352
      [30]
      THOMPSON L H, SCHILD D. Homologous recombinational repair of DNA ensures mammalian chromosome stability[J]. Mutation Research-fundamental and Molecular Mechanisms of Mutagenesis, 2001, 477(1/2): 131-153. doi: 10.1016/S0027-5107(01)00115-4
      [31]
      LISBY M, BARLOW J H, BURGESS R C, et al. Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins[J]. Cell, 2004, 118(6): 699-713. doi: 10.1016/j.cell.2004.08.015
      [32]
      HUANG J, HUEN M S, KIM H, et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair[J]. Nature Cell Biology, 2009, 11(5): 592-603.
      [33]
      KOBAYASHI S, KASAISHI Y, NAKADA S, et al. Rad18 and Rnf8 facilitate homologous recombination by two distinct mechanisms, promoting RAD51 focus formation and suppressing the toxic effect of nonhomologous end joining[J]. Oncogene, 2015, 34(33): 4403-4411. doi: 10.1038/onc.2014.371
      [34]
      BRANZEI D, VANOLI F, FOIANI M. SUMOylation regulates Rad18-mediated template switch[J]. Nature, 2008, 456(7224): 915-920. doi: 10.1038/nature07587
      [35]
      WONG R P, AGUISSA-TOURE A H, WANI A A, et al. Elevated expression of Rad18 regulates melanoma cell proliferation[J]. Pigment Cell & Melanoma Research, 2012, 25(2): 213-218.
    • Cited by

      Periodical cited type(11)

      1. 李欣宇,叶尔江·拜克吐尔汉,王娟,张新娜,张春雨,赵秀海. 基于非线性混合效应模型的东北红松树高-胸径关系. 北京林业大学学报. 2025(03): 38-48 .
      2. 程雯,武晓昱,叶尔江·拜克吐尔汉,王娟,赵秀海,张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究. 北京林业大学学报. 2024(02): 28-39 .
      3. 王维芳,崔梦琦,邢凯然. 包含哑变量的大兴安岭天然白桦林碳密度模型. 森林工程. 2024(05): 74-81 .
      4. 吕乐乐,王文彬,董灵波. 基于哑变量和分位数回归的兴安落叶松更新幼树的树高-胸径模型. 应用生态学报. 2023(09): 2355-2362 .
      5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 .
      6. 郭卫红,郑庆荣,胡砚秋,陈晓江,李眉红. 山西五台山主要针叶树种树高—胸径曲线模型研究. 湖南林业科技. 2022(06): 72-77 .
      7. 王泳腾,黄治昊,王俊,张童,郎立华,孙国明,崔国发. 濒危植物黄檗的生存压力研究. 北京林业大学学报. 2021(01): 49-57 .
      8. 陈浩,罗扬. 马尾松树高-胸径非线性混合效应模型构建. 森林与环境学报. 2021(04): 439-448 .
      9. 张冬燕,王冬至,李晓,高雨珊,李天宇,陈静. 基于分位数回归的针阔混交林树高与胸径的关系. 浙江农林大学学报. 2020(03): 424-431 .
      10. 邓楠,马丰丰,宋庆安,周满,杨蕊,李典军,彭湃,田育新. 环境梯度对杉木公益纯林分布特征及生长的影响. 湖南林业科技. 2020(04): 8-15 .
      11. 韩辉,袁春良,张学利,宋鸽,安宇宁,孙晓辉. 基于林分生长量的沙地樟子松初植造林密度确定. 辽宁林业科技. 2020(06): 1-9+58 .

      Other cited types(5)

    Catalog

      Article views (891) PDF downloads (772) Cited by(16)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return