Citation: | HUANG Guangyan, WANG Haoqiang, LI Guoling, et al. Increase of knock-in efficiency in HEK293T cells by fusing RAD18 factor to Cas9[J]. Journal of South China Agricultural University, 2021, 42(5): 8-18. DOI: 10.7671/j.issn.1001-411X.202011028 |
In mammalian cells, RAD51 and RAD18 are the key factors for regulating the relationship between non-homologous end joining and homology-directed repair. The purpose of this study was to explore the effects of these two factors on the knock-in (KI) efficiency in HEK293T cell lines by eSpCas9 system, and improve the KI efficiency.
eSpCas9-RAD51, eSpCas9-RAD18 fusion proteins and RAD51, RAD18 overexpression vectors were constructed to compare their difference of KI efficiency.
Only the eSpCas9-RAD18 system could significantly increase the KI efficiency of HEK293T cells, which was about 1.4~1.9 times that of the original eSpCas9 system (P<0.01). The eSpCas9-RAD51 system and overexpression ofRAD51/RAD18 did not improve the KI efficiency.
The eSpCas9-RAD18 system constructed in this study can effectively improve the KI efficiency in HEK293T cells, and provides a novel auxiliary integration tool for gene editing, gene therapy and site-specific transgenesis.
[1] |
YAN S, TU Z, LIU Z, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell, 2018, 173(4): 989-1002.e13. doi: 10.1016/j.cell.2018.03.005
|
[2] |
史梦然, 沈宗毅, 张楠, 等. CRISPR/Cas9系统在疾病研究和治疗中的应用[J]. 生物工程学报, 2021, 37(4): 1205-1228.
|
[3] |
ZHOU H, SU J, HU X, et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice[J]. Cell, 2020, 181(3): 590-603.e16. doi: 10.1016/j.cell.2020.03.024
|
[4] |
ZHANG X, LI Z, YANG H, et al. Novel transgenic pigs with enhanced growth and reduced environmental impact[J]. Elife, 2018, 7: e34286. doi: 10.7554/eLife.34286
|
[5] |
钟翠丽. 制备一种共表达多个酶基因的环保型转基因猪[D]. 广州: 华南农业大学, 2018.
|
[6] |
严振鑫, 徐冬一. DNA双链断裂的非同源末端连接修复[J]. 生命科学, 2014, 26(11): 1157-1165.
|
[7] |
LIEBER M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annual Review of Biochemistry, 2010, 79: 181-211. doi: 10.1146/annurev.biochem.052308.093131
|
[8] |
LANS H, MARTEIJN J A, VERMEULEN W. ATP-dependent chromatin remodeling in the DNA-damage response[J]. Epigenetics and Chromatin, 2012, 5: 4. doi: 10.1186/1756-8935-5-4
|
[9] |
FUJITANI Y, YAMAMOTO K, KOBAYASHI I. Dependence of frequency of homologous recombination on the homology length[J]. Genetics, 1995, 140(2): 797-809. doi: 10.1093/genetics/140.2.797
|
[10] |
SABERI A, HOCHEGGER H, SZUTS D, et al. RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair[J]. Molecular and Cellular Biology, 2007, 27(7): 2562-2571. doi: 10.1128/MCB.01243-06
|
[11] |
BURROWS A E, ELLEDGE S J. How ATR turns on: TopBP1 goes on ATRIP with ATR[J]. Genes & Development, 2008, 22(11): 1416-1421.
|
[12] |
BARKLEY L R, PALLE K, DURANDO M, et al. c-Jun N-terminal kinase-mediated Rad18 phosphorylation facilitates Polη recruitment to stalled replication forks[J]. Molecular Biology of The Cell, 2012, 23(10): 1943-1954. doi: 10.1091/mbc.e11-10-0829
|
[13] |
BI X, BARKLEY L R, SLATER D M, et al. Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest[J]. Molecular and Cellular Biology, 2006, 26(9): 3527-3540. doi: 10.1128/MCB.26.9.3527-3540.2006
|
[14] |
SASATANI M, XU Y, KAWAI H, et al. RAD18 activates the G2/M checkpoint through DNA damage signaling to maintain genome integrity after ionizing radiation exposure[J]. Plos One, 2015, 10(2): e0117845. doi: 10.1371/journal.pone.0117845
|
[15] |
INAGAKI A, VAN CAPPELLEN W A, VAN DER LAAN R, et al. Dynamic localization of human RAD18 during the cell cycle and a functional connection with DNA double-strand break repair[J]. DNA Repair, 2009, 8(2): 190-201. doi: 10.1016/j.dnarep.2008.10.008
|
[16] |
LIU T, HUANG J, CHEN J J. RAD18 lives a double life: Its implication in DNA double-strand break repair[J]. DNA Repair, 2010, 9(12): 1241-1248. doi: 10.1016/j.dnarep.2010.09.016
|
[17] |
SONG J, YANG D, XU J, et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency[J]. Nature Communications, 2016, 7: 10548. doi: 10.1038/ncomms10548
|
[18] |
HE X, TAN C, WANG F, et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair[J]. Nucleic Acids Research, 2016, 44(9): e85.
|
[19] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 2001, 25(4): 402-408.
|
[20] |
NAMBIAR T S, BILLON P, DIEDENHOFEN G, et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant[J]. Nature Biotechnology, 2019, 10(1): 3395.
|
[21] |
ZEMAN M K, LIN J R, FREIRE R, et al. DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis[J]. Journal of Cell Biology, 2014, 206(2): 183-197. doi: 10.1083/jcb.201311063
|
[22] |
HELCHOWSKI C M, SKOW L F, ROBERTS K H, et al. A small ubiquitin binding domain inhibits ubiquitin-dependent protein recruitment to DNA repair foci[J]. Cell Cycle, 2013, 12(24): 3749-3758. doi: 10.4161/cc.26640
|
[23] |
CHARPENTIER M, KHEDHER A H Y, MENORET S, et al. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair[J]. Nature Communications, 2018, 9(1): 1133. doi: 10.1038/s41467-018-03475-7
|
[24] |
TRAN N T, BASHIR S, LI X, et al. Enhancement of precise gene editing by the association of Cas9 with homologous recombination factors[J]. Frontiers in Genetics, 2019, 10: 365. doi: 10.3389/fgene.2019.00365
|
[25] |
REES H A, YEH W H, LIU D R. Development of hRAD51-Cas9 nickase fusions that mediate HDR without double-stranded breaks[J]. Nature Communications, 2019, 10(1): 2212. doi: 10.1038/s41467-019-09983-4
|
[26] |
KURIHARA T, KOUYAMA-SUZUKI E, SATOGA M, et al. DNA repair protein RAD51 enhances the CRISPR/Cas9-mediated knock-in efficiency in brain neurons[J]. Biochemical and Biophysical Research Communications, 2020, 524(3): 621-628. doi: 10.1016/j.bbrc.2020.01.132
|
[27] |
TAKAYAMA K, IGAI K, HAGIHARA Y, et al. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system[J]. Nucleic Acids Research, 2017, 45(9): 5198-5207. doi: 10.1093/nar/gkx130
|
[28] |
PAFFETT K S, CLIKEMAN J A, PALMER S, et al. Overexpression of RAD51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths[J]. DNA Repair, 2005, 4(6): 687-698. doi: 10.1016/j.dnarep.2005.03.003
|
[29] |
KIM P M, ALLEN C, WAGENER B M, et al. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells[J]. Nucleic Acids Research, 2001, 29(21): 4352-4360. doi: 10.1093/nar/29.21.4352
|
[30] |
THOMPSON L H, SCHILD D. Homologous recombinational repair of DNA ensures mammalian chromosome stability[J]. Mutation Research-fundamental and Molecular Mechanisms of Mutagenesis, 2001, 477(1/2): 131-153. doi: 10.1016/S0027-5107(01)00115-4
|
[31] |
LISBY M, BARLOW J H, BURGESS R C, et al. Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins[J]. Cell, 2004, 118(6): 699-713. doi: 10.1016/j.cell.2004.08.015
|
[32] |
HUANG J, HUEN M S, KIM H, et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair[J]. Nature Cell Biology, 2009, 11(5): 592-603.
|
[33] |
KOBAYASHI S, KASAISHI Y, NAKADA S, et al. Rad18 and Rnf8 facilitate homologous recombination by two distinct mechanisms, promoting RAD51 focus formation and suppressing the toxic effect of nonhomologous end joining[J]. Oncogene, 2015, 34(33): 4403-4411. doi: 10.1038/onc.2014.371
|
[34] |
BRANZEI D, VANOLI F, FOIANI M. SUMOylation regulates Rad18-mediated template switch[J]. Nature, 2008, 456(7224): 915-920. doi: 10.1038/nature07587
|
[35] |
WONG R P, AGUISSA-TOURE A H, WANI A A, et al. Elevated expression of Rad18 regulates melanoma cell proliferation[J]. Pigment Cell & Melanoma Research, 2012, 25(2): 213-218.
|