ZHANG Ziyang, LIU Yan, WEI Ruiyan, et al. Mining and analysis of miRNAs from Eucalyptus camaldulensis under low temperature stress based on high-throughput sequencing[J]. Journal of South China Agricultural University, 2021, 42(3): 64-74. DOI: 10.7671/j.issn.1001-411X.202011009
    Citation: ZHANG Ziyang, LIU Yan, WEI Ruiyan, et al. Mining and analysis of miRNAs from Eucalyptus camaldulensis under low temperature stress based on high-throughput sequencing[J]. Journal of South China Agricultural University, 2021, 42(3): 64-74. DOI: 10.7671/j.issn.1001-411X.202011009

    Mining and analysis of miRNAs from Eucalyptus camaldulensis under low temperature stress based on high-throughput sequencing

    More Information
    • Received Date: November 10, 2020
    • Available Online: May 17, 2023
    • Objective 

      To predict, mine and analyze the miRNAs involved in low temperature stress response of Eucalyptus camaldulensis, and lay a foundation for further study of the molecular network of regulating low temperature stress response.

      Method 

      Small RNAs were sequenced by high-throughput sequencing using the shoot tips of the tissue cultured seedlings of E. camaldulensis from the low temperature treatment group and the control group (CK). The miRBase21.0, Rfam14.1 and E. grandis genome were taken as reference databases. Bowtie, miREAP as well as miRDeep2 software were used for miRNA prediction. RNAfold was used to fold the secondary structure of the predicted miRNA precursors. psRNATarget was used to predict target genes. The miRNAs with differential expression were analyzed through DEGSeq package, and GO annotation and KEGG enrichment analysis were further performed.

      Result 

      A total of 392 known miRNAs and 97 novel miRNAs belonging to 54 families were predicted in E. camaldulensis. The 282 known miRNAs and 65 novel miRNAs were predicted in CK, while 329 known miRNAs and 51 novel miRNAs were predicted in the low temperature treatment group. At the same time, 80 significantly differentially expressed miRNAs in low temperature treatment group were mined, including 55 up-regulated and 25 down-regulated. The results of GO annotation and KEGG enrichment analysis indicated that these differentially expressed miRNAs might respond to low temperature stress by participating in metabolic pathways, biosynthesis of secondary metabolites, cell membrane changes, signal transduction, and biological regulation. In addition, we found 25 miRNAs that might be associated with the ICE1-CBFs-COR pathway.

      Conclusion 

      The differentially expressed miRNAs are initially obtained by high-throughput sequencing and bioinformatics software under low temperature stress, which can provide some references for further analysis of the molecular functions of these miRNAs in E. camaldulensis under low temperature stress.

    • [1]
      SHANG X H, ARNOLD R J, WU Z H, et al. Combining quantitative data on growth, wood density and other traits with SSR markers to evaluate genetic diversity and structure in a planted population of Eucalyptus camaldulensis Dehn[J]. Forests, 2019, 10(12): 1090. doi: 10.3390/f10121090
      [2]
      BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. doi: 10.1016/S0092-8674(04)00045-5
      [3]
      HAUSSER J, ZAVOLAN M. Identification and consequences of miRNA-target interactions-beyond repression of gene expression[J]. Nature Reviews Genetics, 2014, 15(9): 599-612. doi: 10.1038/nrg3765
      [4]
      SUN Y H, SHI R, ZHANG X H, et al. MicroRNAs in trees[J]. Plant Molecular Biology, 2012, 80(1): 37-53. doi: 10.1007/s11103-011-9864-z
      [5]
      LI F, PIGNATTA D, BENDIX C, et al. MicroRNA regulation of plant innate immune receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1790-1795. doi: 10.1073/pnas.1118282109
      [6]
      KNIGHT M R, KNIGHT H. Low-temperature perception leading to gene expression and cold tolerance in higher plants[J]. New Phytologist, 2012, 195(4): 737-751. doi: 10.1111/j.1469-8137.2012.04239.x
      [7]
      SUNKAR R, ZHU J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8): 2001-2019. doi: 10.1105/tpc.104.022830
      [8]
      张紫阳, 刘艳, 魏瑞研, 等. 木本植物miRNAs参与环境胁迫应答的研究进展[J/OL]. 分子植物育种, 2020(2020-09-11) [2020-11-01]. https://kns.cnki.net/kcms/detail/46.1068.S.20200910.1644.004.html.
      [9]
      LIN Y Z, ZHENG H Q, ZHANG Q, et al. Functional profiling of EcaICE1 transcription factor gene from Eucalyptus camaldulensis involved in cold response in tobacco plants[J]. Journal of Plant Biochemistry and Biotechnology, 2014, 23(2): 141-150. doi: 10.1007/s13562-013-0192-z
      [10]
      ZHANG Z Y, CHENG L, ZHANG W H, et al. Characterization of transcription activation domain of EcaICE1 and its interaction with EcaSIZ1 in Eucalyptus camaldulensis[J]. Trees, 2020, 34(5): 1243-1253. doi: 10.1007/s00468-020-01994-9
      [11]
      CHENG L, ZHANG W H, HU J L, et al. Characterization of the key region and putative phosphorylation sites of EcaICE1 in its molecular interaction with the EcaHOS1 protein in Eucalyptus camaldulensis[J]. Plant Biology, 2021, 23(2): 400-406. doi: 10.1111/plb.13205
      [12]
      LIN Z, LI Q, YIN Q, et al. Identification of novel miRNAs and their target genes in Eucalyptus grandis[J/OL]. Tree Genetics & Genomes, 2018, 14(2018-07-19)[2020-11-01]. https//doi.org/10.1007/s11295-018-1273-x.
      [13]
      FRIEDLÄNDER M R, MACKOWIAK S D, LI N, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012, 40(1): 37-52. doi: 10.1093/nar/gkr688
      [14]
      林元震. R与ASReml-R统计学[M]. 北京: 中国林业出版社, 2016: 381-415.
      [15]
      WANG L K, FENG Z X, WANG X, et al. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138. doi: 10.1093/bioinformatics/btp612
      [16]
      DAI X B, ZHAO P X. psRNATarget: A plant small RNA target analysis server[J]. Nucleic Acids Research, 2011, 39(2): 155-159.
      [17]
      ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: Tool for the unification of biology[J]. Nature Genetics, 2000, 25(1): 25-29. doi: 10.1038/75556
      [18]
      KANEHISA M. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(22): 277-280.
      [19]
      TIAN T, LIU Y, YAN H Y, et al. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update[J]. Nucleic Acids Research, 2017, 45(1): 122-129.
      [20]
      XIE C, MAO X Z, HUANG J J, et al. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39(2): 316-322.
      [21]
      SHI Y T, DING Y L, YANG S H. Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 2018, 23(7): 623-637. doi: 10.1016/j.tplants.2018.04.002
      [22]
      ZHOU M Q, TANG W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells[J]. Molecular Genetics and Genomics, 2019, 294(2): 379-393. doi: 10.1007/s00438-018-1516-4
      [23]
      LU S F, SUN Y H, CHIANG V L. Stress-responsive microRNAs in Populus[J]. Plant Journal, 2008, 55(1): 131-151. doi: 10.1111/j.1365-313X.2008.03497.x
      [24]
      BAO H, CHEN M, CHEN H, et al. Transcriptome-wide identification of miRNA targets and a TAS3-homologous gene in Populus by degradome sequencing[J]. Genes & Genomics, 2019, 41(7): 849-861.
      [25]
      YANG Y T, ZHANG X, SU Y C, et al. miRNA alteration is an important mechanism in sugarcane response to low-temperature environment[J]. BMC Genomics, 2017, 18(1): 818-833.
      [26]
      郭鹏, 张万筠, 马红玉, 等. 番茄Sly-miR167的抗冷性研究[J]. 西北植物学报, 2014, 34(7): 1371-1376.
      [27]
      薄维平, 曾长英, 宋顺, 等. 木薯耐寒相关microRNA的差异表达分析[J]. 热带作物学报, 2010, 31(8): 1260-1265.
      [28]
      GAO N, QIANG X M, ZHAI B N, et al. Transgenic tomato overexpressing ath-miR399d improves growth under abiotic stress conditions[J]. Russian Journal of Plant Physiology, 2015, 62(3): 360-366. doi: 10.1134/S1021443715030061
      [29]
      张达巍, 王遂, 高源, 等. microRNA在植物响应低温胁迫中的作用[J]. 植物生理学报, 2019, 55(2): 117-124.
      [30]
      AGARWAL M, HAO Y, KAPOOR A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. Journal of Biological Chemistry, 2006, 281(49): 37636-37645. doi: 10.1074/jbc.M605895200
      [31]
      DONG, C H, AGARWAL M, ZHANG Y Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(21): 8281-8286. doi: 10.1073/pnas.0602874103
      [32]
      MIURA K, JIN J, LEE J, et al. SIZ1-mediated SUMOylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell, 2007, 19(4): 1403-1414. doi: 10.1105/tpc.106.048397
      [33]
      DING Y L, LI H, ZHANG X Y, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Developmental Cell, 2015, 32(3): 278-289. doi: 10.1016/j.devcel.2014.12.023
      [34]
      LI H, DING Y L, SHI Y T, et al. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis[J]. Developmental Cell, 2017, 43(5): 630-642. doi: 10.1016/j.devcel.2017.09.025
      [35]
      LI H, YE K Y, SHI Y T, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Molecular Plant, 2017, 10(4): 545-559. doi: 10.1016/j.molp.2017.01.004
      [36]
      JIANG B C, SHI Y T, ZHANG X Y, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): E6695-E6702. doi: 10.1073/pnas.1706226114
    • Cited by

      Periodical cited type(8)

      1. 包韵滋,陈林源,邱铠滢,倪燕妹,丁汉卿,王丽平,刘子琪,詹若挺,陈立凯. 广藿香种植生态因子分析与生态种植模式研究进展. 广州中医药大学学报. 2024(11): 3084-3090 .
      2. 王晓宇. 浅析林下经济植物广藿香种质资源保护与栽培技术. 热带农业工程. 2023(03): 121-124 .
      3. 宋朝霞,曹理,李国辉. 有效微生物菌群在农业领域的研究与应用现状. 安徽农业科学. 2022(01): 21-23+54 .
      4. 佘晓环,李明,洪彪. 广藿香连作及轮作对其品质及土壤微生态的影响. 时珍国医国药. 2022(07): 1719-1722 .
      5. 顾艳,梅瑜,徐世强,孙铭阳,周芳,李静宇,王继华. 广藿香种质资源及栽培技术研究进展. 热带作物学报. 2022(08): 1595-1603 .
      6. 焦玲,武雪萍,李晓秀,李生平,李嘉欣. 负压灌溉下土壤水氮分布对黄瓜氮素吸收和干物质的影响. 中国土壤与肥料. 2022(11): 75-84 .
      7. 祝蕾,严辉,刘培,张振宇,张森,郭盛,江曙,段金廒. 药用植物根际微生物对其品质形成的影响及其作用机制的研究进展. 中草药. 2021(13): 4064-4073 .
      8. 范拴喜,崔佳茜,李丹,付林涛,赫晓云,闻杰. 不同改良措施对设施蔬菜土壤肥力和番茄品质的影响. 农业工程学报. 2021(16): 58-64 .

      Other cited types(8)

    Catalog

      Article views (812) PDF downloads (857) Cited by(16)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return