Citation: | YANG Guoling, DENG Lulu, CHEN Kang, et al. Effects of inoculating arbuscular mycorrhizal fungi on growth and phosphorus uptake of soybean under low phosphorus conditions[J]. Journal of South China Agricultural University, 2021, 42(4): 42-50. DOI: 10.7671/j.issn.1001-411X.202010024 |
To illuminate the response of different P-efficient soybean genotypes to arbuscular mycorrhizal fungi inoculation at different growth stages and the relationship with P efficiency, and provide a theoretical basis for research of arbuscular mycorrhizal fungi inoculation improving crop P efficiency.
The experiments were conducted using three soybean genotypes of ‘Weilianmusi 82’ ‘Yuechun 04-5’ and ‘Baxi 10’ under mycorrhizal and non-mycorrhizal inoculation treatments at flowering and podding stages. The effects of arbuscular mycorrhizal fungi inoculation on soybean plant dry weight, arbuscular mycorrhizal colonization rate, P nutrition status, root traits, and expression of arbuscular mycorrhizal inducible phosphate transporter genes were analyzed.
The mycorrhizal responses of different soybean genotypes to arbuscular mycorrhizal fungi inoculation were significantly different at different growth stages. Compared with non-mycorrhizal inoculation treatment, the inoculation treatment significantly improved the expression levels of three arbuscular mycorrhizal inducible P transporter genes of GmPT8, GmPT9 and GmPT10 in the roots of three soybean genotypes at flowering stage, which resulted in the significant increase of P concentrations in roots of these three soybean genotypes, and the inoculation treatment significantly improved the root dry weight of these three soybean genotypes, as well as shoot dry weight, P concentration and total P uptake amount of ‘Baxi 10’ at podding stage. At flowering stage, non-mycorrhizal ‘Weilianmusi 82’ and ‘Yuechun 04-5’ plants had significantly higher shoot dry weight, total P uptake, total root length and root surface area than ‘Baxi 10’, while mycorrhizal growth response and mycorrhizal P response of arbuscular mycorrhizal fungi inoculated ‘Baxi 10’ were significantly higher than those of ‘Weilianmusi 82’ and ‘Yuechun 04-5’.
‘Weilianmusi 82’ and ‘Yuechun 04-5’ have higher P efficiency, while ‘Baxi 10’ has higher mycorrhizal dependence. The prolonged growth period from flowering stage to podding stage promotes the transformation of acquired P by mycorrhizal plants into biomass, which further stimulates the beneficial symbiosis between soybean and arbuscular mycorrhizal fungi.
[1] |
SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62(1): 227-250. doi: 10.1146/annurev-arplant-042110-103846
|
[2] |
张淑彬, 王幼珊, 殷晓芳, 等. 不同施P水平下AM真菌发育及其对玉米氮P吸收的影响[J]. 植物营养与肥料学报, 2017, 23(3): 649-657. doi: 10.11674/zwyf.16406
|
[3] |
冯艳梅, 冯固, 王敬国, 等. 植物P营养状况对丛枝菌根真菌生长及代谢活性的调控[J]. 菌物系统, 2003, 22(4): 589-598. doi: 10.3969/j.issn.1672-6472.2003.04.016
|
[4] |
PARNISKE M. Arbuscular mycorrhiza: The mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 2008, 6(10): 763-775. doi: 10.1038/nrmicro1987
|
[5] |
CHIU C H, PASZKOWSKI U. Mechanisms and impact of symbiotic phosphate acquisition[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(6): a034603. doi: 10.1101/cshperspect.a034603
|
[6] |
MISSION J, THIBAUD M C, BECHTOLD N, et al. Transcriptional regulation and functional properties of Arabidopsis Pht1; 4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants[J]. Plant Molecular Biology, 2004, 55(5): 727-741. doi: 10.1007/s11103-004-1965-5
|
[7] |
SHIN H, SHIN H S, DEWBRE G R, et al. Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant Journal, 2004, 39(4): 629-642. doi: 10.1111/j.1365-313X.2004.02161.x
|
[8] |
SMITH S E, READ D J. Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3): 273-281.
|
[9] |
SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiology, 2003, 133(1): 16-20. doi: 10.1104/pp.103.024380
|
[10] |
SMITH S E, SMITH F A, JAKOBSEN I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake[J]. New Phytologist, 2004, 162(2): 511-524. doi: 10.1111/j.1469-8137.2004.01039.x
|
[11] |
LI H Y, SMITH S E, HOLLOWAY R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006, 172(3): 536-543. doi: 10.1111/j.1469-8137.2006.01846.x
|
[12] |
YANG S Y, GRONLUND M, JAKOBSEN I, et al. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family[J]. Plant Cell, 2012, 24(10): 4236-4251. doi: 10.1105/tpc.112.104901
|
[13] |
MAHERALI H. Is there an association between root architecture and mycorrhizal growth response?[J]. New Phytologist, 2014, 204(1): 192-200.
|
[14] |
SMITH F A, GRACE E J, SMITH S E. More than a carbon economy: Nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses[J]. New Phytologist, 2009, 182(2): 347-358. doi: 10.1111/j.1469-8137.2008.02753.x
|
[15] |
ZHU Y G, SMITH S E, BARRITT A R, et al. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars[J]. Plant and Soil, 2001, 237(2): 249-255.
|
[16] |
ZHU Y G, SMITH F A, SMITH S E. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil[J]. Mycorrhiza, 2003, 13(2): 93-100.
|
[17] |
SENSOY S, DEMIR S , TURKMEN O, et al. Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi[J]. Scientia Horticulturae, 2007, 113(1): 92-95.
|
[18] |
WRIGHT D P, READ D J, SCHOLES J D. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L[J]. Plant Cell and Environment, 1998, 21(9): 881-891.
|
[19] |
ZHU Y G, SMITH S E. Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi[J]. Plant and Soil, 2001, 231(1): 105-112. doi: 10.1023/A:1010320903592
|
[20] |
QIN J, WANG H, CAO H, et al. Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean[J]. Mycorrhiza, 2020, 30(2/3): 285-298.
|
[21] |
WANG X, ZHAO S, BÜCKING H. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency[J]. Annals of Botany, 2016, 118(1): 11-21. doi: 10.1093/aob/mcw074
|
[22] |
辜晓婷, 覃金转, 王秀荣. 接种菌根真菌对不同P效率基因型大豆生长和P吸收的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 357-364.
|
[23] |
崔广娟, 曹华元, 陈康, 等. 镉胁迫对4种基因型大豆生长和体内元素分布的影响[J]. 华南农业大学学报, 2020, 41(5): 49-57. doi: 10.7671/j.issn.1001-411X.201911023
|
[24] |
CUI G, AI S, CHEN K, et al. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression[J]. Ecotoxicology and Environmental Safety, 2019, 171: 231-239. doi: 10.1016/j.ecoenv.2018.12.093
|
[25] |
ZHAO S P, CHEN A, CHEN C, et al. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean[J]. Physiologia Plantarum, 2019, 166(3): 712-728. doi: 10.1111/ppl.12847
|
[26] |
刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007.
|
[27] |
TAWARAYA K. Arbuscular mycorrhizal dependency of different plant species and cultivars[J]. Soil Science and Plant Nutrition, 2003, 49(5): 655-668.
|
[28] |
JANOS D P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas[J]. Mycorrhiza, 2007, 17(2): 75-91. doi: 10.1007/s00572-006-0094-1
|
[29] |
PENG S, EISSENSTAT D M, GRAHAM J H, et al. Growth depression in mycorrhizal citrus at high-phosphorus supply[J]. Plant Physiology, 1993, 101(3): 1063-1071. doi: 10.1104/pp.101.3.1063
|
[30] |
KAHILUOTO H, KETOJA E, VESTBERG M. Plant-available P supply is not the main factor determining the benefit from arbuscular mycorrhiza to crop P nutrition and growth in contrasting cropping systems[J]. Plant and Soil, 2012, 350: 85-98. doi: 10.1007/s11104-011-0884-x
|
[31] |
赵静, 刘嘉儿, 严小龙, 等. P有效性对大豆碳代谢的生理调控及基因型差异[J]. 华南农业大学学报, 2010, 31(3): 1-4. doi: 10.3969/j.issn.1001-411X.2010.03.001
|
[32] |
ZHAO J, FU J B, LIAO H, et al. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm[J]. Chinese Science Bulletin, 2004, 49(15): 1611-1620. doi: 10.1007/BF03184131
|
[33] |
程凤娴, 涂攀峰, 严小龙, 等. 酸性红壤中P高效大豆新种质的P营养特性[J]. 植物营养与肥料学报, 2009, 16(1): 71-81.
|
[34] |
YAO Q, LI X L, CHRISTIE P. Factors affecting arbuscular mycorrhizal dependency of wheat genotypes with different phosphorus efficiencies[J]. Journal of Plant Nutrition, 2001, 24(9): 1409-1419. doi: 10.1081/PLN-100106991
|
[35] |
PASZKOWSKI U, KROKEN S, ROUX C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 13324-13329.
|
[36] |
JAVOT H, PENMETSA R V, TERZAGHI N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1720-1725.
|
[37] |
ZHANG S, ZHOU J, WANG G H, et al. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10225-10235. doi: 10.1007/s00253-015-6913-6
|