Citation: | LIAN Chen, YU Jiajia, GAO Ting, et al. Dynamic effects of three kinds of shell biochars on physicochemical properties of red soil in South China [J]. Journal of South China Agricultural University, 2022, 43(1): 20-27. DOI: 10.7671/j.issn.1001-411X.202010019 |
This study was to explore the dynamic effects of three kinds of shell biochars on the physical and chemical properties of red soil in southern China, and provide a theoretical basis for improvement of red soil in southern China.
Three kinds of shell biochars were prepared by slow pyrolysis method and characterized. The dynamic effects of adding three kinds of shell biochars on soil organic matter content, bulk density, pH and available potassium were studied through indoor experiment.
During the treatment period of 1–90 d, the application of pine nut shell biochar, rice husk biochar and camellia oleifera shell biochar significantly increased the contents of soil organic matter and available potassium. Compared with CK group, within 30–90 d, the content of organic matter increased by 258.94%–284.92% in 5% (w) pine husk biochar application treatment, and the content of available potassium increased by 429.98%–716.58% in 5% (w) rice husk biochar application treatment. During 1–90 d, the application of rice husk biochar decreased the bulk density of red soil, and within 30–90 d, the application of 5% (w) rice husk biochar decreased the bulk density of red soil by 9.72% –15.38% compared with CK group. During 1–90 d, the application of camellia shell biochar significantly increased soil pH , and within 30–90 d, the application of 5% (w) camellia shell biochar increased soil pH by 16.91%–29.53% compared with CK group. In addition, the effects of different application amounts of pine nut shell biochar on soil physical and chemical properties showed that the application of 8% (w) pine nut shell biochar could steadily increase soil organic matter content, pH and available potassium content, as well as decrease soil bulk density during the treatment period of 1–90 d.
Different shell-based biochar can all improve soil characteristics, increase soil organic matter and soil available potassium contents. The application of pine nut shell biochar may have a more significant effect on improving soil organic matter content, and the application of rice hull biochar may have a more significant effect on reducing soil bulk density and increasing available potassium content, and the application of camellia oleifera shell biochar may have a more significant effect on increasing soil pH.
[1] |
佟雪娇, 李九玉, 姜军, 等. 添加农作物秸秆炭对红壤吸附Cu(Ⅱ)的影响[J]. 生态与农村环境学报, 2011, 27(5): 37-41. doi: 10.3969/j.issn.1673-4831.2011.05.007
|
[2] |
杜衍红, 蒋恩臣, 王明峰, 等. 稻壳炭对红壤理化特性及芥菜生长的影响[J]. 土壤, 2016, 48(6): 1159-1165.
|
[3] |
郭碧林, 陈效民, 景峰, 等. 生物质炭添加对重金属污染稻田土壤理化性状及微生物量的影响[J]. 水土保持学报, 2018, 32(4): 279-284.
|
[4] |
XIA J L,NI C X, LIU S X. Research progress on application effect of biomass charcoal and its restoration of soil phenolic acid pollution[J]. Plant Diseases and Pests, 2019, 10(1): 5-9.
|
[5] |
GLASSER B. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon Region[J]. Organic Geochemistry, 2000, 31(7): 669-678.
|
[6] |
SCHMIDT M W I, NOACK A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges[J]. Global Biogeochemical Cycles., 2000, 14(3): 777-793. doi: 10.1029/1999GB001208
|
[7] |
王微, 王明峰, 姜洋, 等. 稻壳炭基肥的制备及其释放特性和机理探讨[J]. 可再生能源, 2020, 38(10): 1288-1294. doi: 10.3969/j.issn.1671-5292.2020.10.002
|
[8] |
QIAO Y, MIAO S, ZHONG X, et al. The greatest potential benefit of biochar return on bacterial community structure among three maize-straw products after eight-year field experiment in Mollisols[J/OL]. Applied Soil Ecology, 2019, 147: 103432. [2020-10-15]. https://doi.org/10.1016/j.apsoil.2019.103432.
|
[9] |
朱光耀, 何丽芝, 秦鹏, 等. 施用猪炭对土壤吸附Pb2+的影响[J]. 浙江农林大学学报, 2019, 36(3): 573-580.
|
[10] |
WU H, QIN X, WU H, et al. Biochar mediates microbial communities and their metabolic characteristics under continuous monoculture[J/OL]. Chemosphere, 2020, 246: 125835[2020-10-15]. https://doi.org/10.1016/j.chemosphere.2020.125835.
|
[11] |
杜衍红, 王向琴, 刘传平, 等. 铁改性木本泥炭对镉砷复合污染稻田的修复效果研究[J]. 农业现代化研究, 2021, 42(2): 311-320.
|
[12] |
索慧慧, 林颖, 赵苗苗, 等. 生物炭对淹水土壤中溶解性有机质含量及组成特征的影响[J]. 水土保持学报, 2019, 33(2): 155-161.
|
[13] |
BHOGAL A, NICHOLSON F A, CHAMBERS B J. Organic carbon additions: Effects on soil bio-physical and physico-chemical properties[J]. European Journal of Soil Science, 2010, 60(2): 276-286.
|
[14] |
杨彩迪, 宗玉统, 卢升高. 不同生物炭对酸性农田土壤性质和作物产量的动态影响[J]. 环境科学, 2020, 41(4): 1914-1920.
|
[15] |
LI S, WANG S, FAN M, et al. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community[J/OL]. Soil and Tillage Research, 2020, 196: 104437.[2020-10-15].https://doi.org/10.1016/j.still.2019.104437.
|
[16] |
刘超, 廖雷, 韦真周, 等. 油茶果壳炭对低浓度油烟的吸附行为[J]. 环境工程学报, 2016, 10(8): 4387-4390. doi: 10.12030/j.cjee.201503135
|
[17] |
廖芬, 杨柳, 李强, 等. 不同生物质来源生物炭品质的因子分析与综合评价[J]. 华南农业大学学报, 2019, 40(3): 29-37. doi: 10.7671/j.issn.1001-411X.201806028
|
[18] |
JIAN X, ZHUANG X, LI B, et al. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis[J]. Environmental Technology & Innovation, 2018, 10: 27-35.
|
[19] |
高莹, 孙喜军, 吕爽, 等. 不同改良剂对塑料大棚土壤理化性质及甜瓜品质的影响[J]. 中国农学通报, 2021, 37(11): 51-58. doi: 10.11924/j.issn.1000-6850.casb2020-0371
|
[20] |
马茹茹, 刘锦卉, 史晓凯, 等. 不同种类生物炭对砷污染土壤的改良效应[J]. 环境污染与防治, 2021, 43(2): 200-205.
|
[21] |
高玉秋, 徐彩龙, 马立晖, 等. 鄂伦春旗耕地土壤有机质含量的时空变化趋势及其与大豆产量的关系[J]. 农学学报, 2021, 11(2): 57-63. doi: 10.11923/j.issn.2095-4050.cjas20190400012
|
[22] |
王文俊, 李志伟, 王璨, 等. 高光谱成像的褐土土壤速效钾含量预测[J]. 光谱学与光谱分析, 2019, 39(5): 1579-1585.
|
[23] |
中国兵器工业集团公司. GB/T 7702.7—2008 煤质颗粒活性炭试验方法: 碘吸附值的测定[S]. 北京: 中国标准出版社, 2008.
|
[24] |
李湘萍, 张建光. 生物质热解制备多孔炭材料的研究进展[J]. 石油学报(石油加工), 2020, 36(5): 1101-1110.
|
[25] |
鞠艳艳, 丁元君, 邵前前, 等. 城市园林废弃物生物质炭性质及其应用潜力[J]. 林业科学, 2020, 56(8): 107-120. doi: 10.11707/j.1001-7488.20200813
|
[26] |
简秀梅, 蒋恩臣, 宋艳培, 等. 生物质炭的制备工艺参数与吸附性能分析[J]. 江西农业大学学报, 2016, 38(3): 557-564.
|
[27] |
简秀梅, 庄修政, 蒋恩臣, 等. 农业废弃物制备颗粒活性炭的工艺优化研究[J]. 华南农业大学学报, 2015, 36(2): 90-94. doi: 10.7671/j.issn.1001-411X.2015.02.016
|
[28] |
王罡, 蒋恩臣, 王明峰, 等. 松子壳热解炭活化特性研究[J]. 可再生能源, 2015, 33(1): 104-110.
|
[29] |
吴继辉, 朱正祥, 王亮才, 等. 不同热处理方式对稻壳炭孔径的影响[J]. 广东化工, 2018, 45(14): 7-8. doi: 10.3969/j.issn.1007-1865.2018.14.004
|
[30] |
王琳琳, 龙柳锦, 陈小鹏, 等. 油茶壳基中孔活性炭的表征与孔结构研究[J]. 高校化学工程学报, 2013, 27(2): 297-303.
|
[31] |
简秀梅, 陈学濡, 刘富豪, 等. 不同灰分生物质炭对红壤理化特性与微生物特性的影响[J]. 农业机械学报, 2020, 51(6): 282-291. doi: 10.6041/j.issn.1000-1298.2020.06.030
|
[32] |
JIAN X M, UCHIMIYA M, ORLOV A. Particle size- and crystallinity-controlled phosphorus release from biochars[J]. Energy & Fuels, 2019, 33(6): 5343-5351.
|
[33] |
CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428. doi: 10.1016/j.biortech.2011.11.084
|
[34] |
DEENIK J L, MCCLELLAN T, UEHARA G, et al. Charcoal volatile matter content influences plant growth and soil nitrogen transformations[J]. Soil Science Society of America Journal, 2010, 74(4): 1259-1270. doi: 10.2136/sssaj2009.0115
|
[35] |
尹显宝, 窦森, 田宇欣, 等. 添加不同来源生物质炭对暗棕壤腐殖质组成和胡敏酸结构特征的影响[J]. 吉林农业大学学报, 2020, 42(2): 175-182.
|
[36] |
李艳春, 陈志鹏, 王义祥, 等. 不同类型生物质材料改良茶园土壤酸度的效果评价[J]. 福建农业学报, 2018, 33(11): 1190-1194.
|
[37] |
卜晓莉, 汪浪浪, 马青林, 等. 稻壳炭施用对太湖滨岸灰潮土氮磷淋失及土壤性质的影响[J]. 生态环境学报, 2019, 28(11): 2216-2222.
|