• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LIU Guoxuan, CHEN Kang, LU Xing, et al. Function of GmPIN2b in soybean regulating root response to low phosphorus stress[J]. Journal of South China Agricultural University, 2021, 42(4): 33-41. DOI: 10.7671/j.issn.1001-411X.202010014
Citation: LIU Guoxuan, CHEN Kang, LU Xing, et al. Function of GmPIN2b in soybean regulating root response to low phosphorus stress[J]. Journal of South China Agricultural University, 2021, 42(4): 33-41. DOI: 10.7671/j.issn.1001-411X.202010014

Function of GmPIN2b in soybean regulating root response to low phosphorus stress

More Information
  • Received Date: October 18, 2020
  • Available Online: May 17, 2023
  • Objective 

    To study the function of auxin transporter PIN gene family in the adaptation of soybean (Glycine max) roots to low phosphorus stress.

    Method 

    A total of 23 GmPIN family members of soybean were conducted evolutionary tree and expression pattern analyses, so as to analyze the GmPIN2bfunction.

    Result 

    The 23 GmPIN family members of soybean were scattered in seven different sub-families, among which GmPIN2a, GmPIN2b and GmPIN9a, GmPIN9d were in the same subfamily as Arabidopsis thaliana AtPIN2. Different GmPIN family members had different tissue expression locations in soybean and their expression patterns regulated by low phosphorus were different. Among them, the expression level of GmPIN2b in soybean roots was significantly up-regulated after low phosphorus stress for six days. The complement expression of GmPIN2b could partially restore the phenotype of Atpin2 mutants. The fresh weight and main root length of transgenic plants expressing GmPIN2b were significantly higher than those of Atpin2 mutant under both low or high phosphorus conditions. Moreover, the complement expression of GmPIN2b also significantly increased the number of primary lateral roots of Atpin2 mutant in low phosphorus treatment, and increased the sensitivity of the root system to gravity in high phosphorus treatment.

    Conclusion 

    GmPIN2b plays an important regulatory role in the process of root morphogenesis in response to low phosphorus stress.

  • [1]
    WOJCIECHOWSKI M F, LAVIN M, SANDERSON M J. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family[J]. American Journal of Botany, 2004, 91(11): 1846-1862. doi: 10.3732/ajb.91.11.1846
    [2]
    WANG Y, CHAI C, VALLIYODAN B, et al. Genome-wide analysis and expression profiling of the PIN auxin transporter  gene  family  in  soybean  (Glycine max)[J]. BMC Genomics, 2015, 16(1): 951. doi: 10.1186/s12864-015-2149-1.
    [3]
    ZHANG M K, XU J M. Restoration of surface soil fertility of an eroded red soil in southern China[J]. Soil and Tillage Research, 2005, 80(1): 13-21.
    [4]
    WANG X, YAN X, LIAO H. Genetic improvement for phosphorus efficiency in soybean: A radical approach[J]. Annals of Botany, 2010, 106(1): 215-222. doi: 10.1093/aob/mcq029
    [5]
    刘灵, 廖红, 王秀荣, 等. 不同根构型大豆对低磷的适应性变化及其与磷效率的关系[J]. 中国农业科学, 2008, 41(4): 1089-1099.
    [6]
    XIE J N, ZHOU J, WANG X R, et al. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system[J]. Journal of Integrative Plant Biology, 2015, 57(5): 477-485. doi: 10.1111/jipb.12243
    [7]
    严小龙, 张福锁. 植物营养遗传学[M]. 北京: 中国农业出版社, 1997.
    [8]
    赵静, 付家兵, 廖红, 等. 大豆磷效率应用核心种质的根构型性状评价[J]. 科学通报, 2004, 49(13): 1249-1257.
    [9]
    MANSKE G G B, ORTIZ-MONASTERIO J I, VAN GINKEL M, et al. Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on an acid Andisol in Mexico[J]. Plant and Soil, 2000, 221(2): 189-204. doi: 10.1023/A:1004727201568
    [10]
    LIAO H, YAN X, RUBIO G, et al. Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean[J]. Functional Plant Biology, 2004, 31(10): 959-970. doi: 10.1071/FP03255
    [11]
    LYNCH J P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops[J]. Plant Physiology, 2011, 156(3): 1041-1049. doi: 10.1104/pp.111.175414
    [12]
    严小龙, 廖红, 戈振扬, 等. 植物根构型特性与磷吸收效率[J]. 植物学通报, 2000, 17(6): 511-519.
    [13]
    LIU H, LIU B, CHEN X, et al. AUX1 acts upstream of PIN2 in regulating root gravitropism[J]. Biochemical and Biophysical Research Communications, 2018, 507(1/2/3/4): 433-436.
    [14]
    潘建伟, 叶晓帆, 王超, 等. 拟南芥PIN2介导的生长素极性运输调控植物根向地性[J]. 浙江师范大学学报(自然科学版), 2010, 31(1): 1-6.
    [15]
    GEISLER M, WANG B, ZHU J. Auxin transport during root gravitropism: Transporters and techniques[J]. Plant Biology, 2014, 16(S1): 50-57.
    [16]
    PAPONOV I A, TEALE W D, TREBAR M, et al. The PIN auxin efflux facilitators: Evolutionary and functional perspectives[J]. Trends in Plant Science, 2005, 10(4): 170-177. doi: 10.1016/j.tplants.2005.02.009
    [17]
    FERARU E, FRIML J. PIN polar targeting[J]. Plant Physiology, 2008, 147(4): 1553-1559. doi: 10.1104/pp.108.121756
    [18]
    ZHANG Y, XIAO G, WANG X, et al. Evolution of fast root gravitropism in seed plants[J]. Nature Communications, 2019, 10(1): 3470-3480. doi: 10.1038/s41467-019-11407-2
    [19]
    MÜLLER A, GUAN C, GÄLWEILER L, et al. AtPIN2 defines a locus of Arabidopsisfor root gravitropism control[J]. The EMBO Journal, 1998, 17(23): 6903-6911. doi: 10.1093/emboj/17.23.6903
    [20]
    WANG L, GUO M, LI Y, et al. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice[J]. Journal of Experimental Botany, 2017, 69(3): 385-397.
    [21]
    PATTISON R J, CATALA C. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of thePIN and AUX/LAX gene families[J]. Plant Journal, 2012, 70(4): 585-598. doi: 10.1111/j.1365-313X.2011.04895.x
    [22]
    FORESTAN C, FARINATI S, VAROTTO S. The maize PIN gene family of auxin transporters[J]. Frontiers in Plant Science, 2012, 3: 16. doi: 10.3389/fpls.2012.00016.
    [23]
    LIU B, ZHANG J, WANG L, et al. A survey ofPopulus PIN-FORMED family genes reveals their diversified expression patterns[J]. Journal of Experimental Botany, 2014, 65(9): 2437-2448. doi: 10.1093/jxb/eru129
    [24]
    INAHASHI H, SHELLEY I J, YAMAUCHI T, et al. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice[J]. Physiologia Plantarum, 2018, 164(2): 216-225. doi: 10.1111/ppl.12707
    [25]
    SUN H, GUO X, XU F, et al. Overexpression of OsPIN2 regulates root growth and formation in response to phosphate deficiency in rice[J]. International Journal of Molecular Sciences, 2019, 20(20): 5144. doi: 10.3390/ijms20205144.
    [26]
    MO X, ZHANG M, LIANG C, et al. Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes[J]. Plant Physiology and Biochemistry, 2019, 139: 697-706. doi: 10.1016/j.plaphy.2019.04.033
    [27]
    GÄLWEILER L, GUAN C, MÜLLER A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue[J]. Science, 1998, 282(5397): 2226-2230. doi: 10.1126/science.282.5397.2226
    [28]
    DING Z, WANG B, MORENO I, et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis[J]. Nature Communications, 2012, 3: 941. doi: 10.1038/ncomms1941.
    [29]
    KEUSKAMP D H, POLLMANN S, VOESENEK L A C J, et al. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52): 22740-22744. doi: 10.1073/pnas.1013457108
    [30]
    FRIML J, BENKOVÁ E, BLILOU I, et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis[J]. Cell, 2002, 108(5): 661-673. doi: 10.1016/S0092-8674(02)00656-6
    [31]
    MRAVEC J, SKUPA P, BAILLY A, et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter[J]. Nature, 2009, 459(7250): 1136-1140. doi: 10.1038/nature08066
    [32]
    KLEINE-VEHN J, DING Z J, JONES A R, et al. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22344-22349. doi: 10.1073/pnas.1013145107
    [33]
    刘君, 蔡昆争, 骆世明, 等. 磷处理对不同磷效率基因型大豆根系性状和干物质积累及产量的影响[J]. 青岛农业大学学报(自然科学版), 2008, 25(3): 211-214.
    [34]
    LI L, XU J, XU Z, et al. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis[J]. Plant Cell, 2005, 17(10): 2738-2753. doi: 10.1105/tpc.105.034397
  • Cited by

    Periodical cited type(2)

    1. 魏鹏,宫金良,张彦斐. 物理场辅助农业雾化施药技术的研究现状与展望. 现代农业装备. 2023(03): 31-38 .
    2. 魏鹏,闫晓静,徐军,杨代斌,袁会珠. 植物保护施药技术创新与装备智能化的研究现状与展望. 现代农药. 2023(05): 1-8+27 .

    Other cited types(2)

Catalog

    Article views (1088) PDF downloads (929) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return