Citation: | DUAN Jieli, YI Wenfeng, WANG Hongjun, et al. Design and test of banana skewer fruit holding mechanism[J]. Journal of South China Agricultural University, 2021, 42(2): 116-123. DOI: 10.7671/j.issn.1001-411X.202009025 |
Banana harvesters are equipped to carry large loads of bunches. We propose a nail holding mechanism for bananas which posses high strength and reliable clamping force while ensuring flexible and effective operation.
An inner palm holding mechanism with nails for picking bananas was designed, the clamping effects of different combination factors affecting the gripping force were tested, and the clamping test platform was built. The three main factors of cylinder pressure, the number and arrangement of nails affecting the clamping effect were selected, and the single factor experiment and response surface method were used to test the clamping force.
In the cylinder pressure test, when the cylinder pressure was 0.4 MPa, the corresponding tension was about 500 N closest to the maximum static friction force between the banana handle and the palm, and banana could be clamped stably. In the test of nail arrangement, the friction that the rectangle could withstand was the maximum with a value of 800 N, which was greater than the maximum static friction force between the banana handle and the palm, and the stable clamping effect could be obtained. In the test of nail number, when the numbers of nails were eight and ten, their pulls closed to. The reason may be that the banana handle is not a regular cylindrical shape, so that the nails on the round holding palm may not be all inserted into the banana handle. When the number of nails was eight or ten, only six nails plunged into banana handle and effectively clamped. When the number of nails exceeded ten, the tension dropped instead of rising. The reason for this phenomenon may be that the more nails there are, the more serious the mutual interference occurs, and the number of effective nails decreases instead of rising.
The factors influencing the clamping force effect of clamping mechanism are cylinder pressure > nail arrangement > number of nails. The optimal parameter combination is 0.4 MPa cylinder pressure, ten nails and rectangular arrangement. This paper provides a theoretical reference for the design of clamping mechanism of key components of banana harvester equipment in flat banana plantation.
[1] |
朱冬云, 曲军远, 刘世豪, 等. 海南香蕉采摘技术现状及发展趋势[J]. 热带农业工程, 2015, 39(1): 25-27.
|
[2] |
杨洲, 郭杰, 金莫辉, 等. 基于恒力机构的香蕉落梳装置设计与自适应性分析[J]. 农业机械学报, 2019, 50(6): 148-155. doi: 10.6041/j.issn.1000-1298.2019.06.016
|
[3] |
柯佑鹏, 过建春, 夏勇开. 2011年海南省香蕉产业损害监督预警分析报告[J]. 中国热带农业, 2012(2): 20-23.
|
[4] |
罗陆锋, 邹湘军, 程堂灿, 等. 采摘机器人视觉定位及行为控制的硬件在环虚拟试验系统设计[J]. 农业工程学报, 2017, 33(4): 39-46. doi: 10.11975/j.issn.1002-6819.2017.04.006
|
[5] |
罗陆锋, 邹湘军, 卢清华, 等. 采摘机器人作业行为虚拟仿真与样机试验[J]. 农业机械学报, 2018, 49(5): 34-42. doi: 10.6041/j.issn.1000-1298.2018.05.004
|
[6] |
WANG C, TANG Y, ZOU X, et al. Recognition and matching of clustered mature litchi fruits using binocular charge-coupled device (CCD) color cameras[J]. Sensors, 2017, 17(11): 2564. doi: 10.3390/s17112564
|
[7] |
LIU T, LUO G, EHSANI R, et al. Simulation study on the effects of tine-shaking frequency and penetrating depth on fruit detachment for citrus canopy-shaker harvesting[J]. Computers and Electronics in Agriculture, 2018, 148: 54-62. doi: 10.1016/j.compag.2018.03.004
|
[8] |
WANG C, LEE W, ZOU X, et al. Detection and counting of immature green citrus fruit based on the local binary patterns (LBP) feature using illumination-normalized images[J]. Precision Agriculture, 2018, 19(6): 1062-1083. doi: 10.1007/s11119-018-9574-5
|
[9] |
王红军, 黄国钢, 陈佳鑫, 等. 香蕉采摘机械手结构设计及样机试验[J]. 机械设计, 2013, 30(6): 13-17. doi: 10.3969/j.issn.1001-2354.2013.06.004
|
[10] |
尹建军, 陈永河, 贺坤, 等. 抓持−旋切式欠驱动双指手葡萄采摘装置设计与试验[J]. 农业机械学报, 2017, 48(11): 12-20. doi: 10.6041/j.issn.1000-1298.2017.11.002
|
[11] |
苗玉彬, 郑家丰. 苹果采摘机器人末端执行器恒力柔顺机构研制[J]. 农业工程学报, 2019, 35(10): 19-25. doi: 10.11975/j.issn.1002-6819.2019.10.003
|
[12] |
张铁中, 杨丽, 王粮局, 等. 高架草莓采摘机器人设计与试验[J]. 农业机械学报, 2012, 43(9): 165-172. doi: 10.6041/j.issn.1000-1298.2012.09.031
|
[13] |
陈燕, 邹湘军, 徐东风, 等. 荔枝采摘机械手机构设计及运动学仿真[J]. 机械设计, 2010, 27(5): 31-34.
|
[14] |
BAETEN J, DONNE K, BOEDRIJ S, et al. Autonomous fruit picking machine: A robotic apple harvester[J]. Springer Tracts in Advanced Robotics, 2008, 42: 531-539.
|
[15] |
杨洲, 严梁立, 李军, 等. 果园采摘机械化装备与技术: 创新农业工程科技 推进现代农业发展[C]//中国农业工程学会2011年学术年会论文集. 北京: 中国农业工程学会, 2011.
|
[16] |
MONTA M, KONDO N, SHIBANO Y. Agricultural robot in grape prediction system[C]//Proceedings of the 1995 IEEE International Conference on Robotics and Automation. Nagoya: IEEE, 1995: 2504-2509.
|
[17] |
王红军, 黄国钢, 陈佳鑫, 等. 香蕉采摘机械手结构设计及样机试验[J]. 机械设计, 2013, 30(6): 17-21.
|
[18] |
唐之富. 香蕉采摘机械手夹持实验及仿真分析[D]. 广州: 华南农业大学, 2016.
|
[19] |
任思婕, 胡吕霖, 沈清, 等. 响应面法结合模糊评价优化微波辣子鸡丁工艺[J]. 食品研究与开发, 2017, 38(12): 52-57. doi: 10.3969/j.issn.1005-6521.2017.12.012
|
[20] |
AMBATI P, AYYANNA C. Optimizing medium constituents and fermentation conditions for citric acid production from palmyra jaggery using response surface method[J]. World Joumal of Microbiology & Biotechnology, 2001, 17(4): 331-335.
|
[21] |
SMC中国有限公司. 气缸的型号选定步骤[EB/OL]. [2020-06-08]. https://www.smc.com.cn/products/zh/get.do?type=GUIDE&id=CM-ZH.
|
1. |
赵薇,曹国伟,周子航,王卫振,辛国省,蔡正云,顾亚玲,张娟. 鸡肉品质相关调控基因研究进展. 农业生物技术学报. 2022(02): 370-378 .
![]() |