• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
WANG Xinyu, NIU Pengshuai, LU Wei, et al. A nondestructive detection method for single maize seed germination rate based on photoacoustic spectrum deep scanning[J]. Journal of South China Agricultural University, 2020, 41(6): 119-125. DOI: 10.7671/j.issn.1001-411X.202009015
Citation: WANG Xinyu, NIU Pengshuai, LU Wei, et al. A nondestructive detection method for single maize seed germination rate based on photoacoustic spectrum deep scanning[J]. Journal of South China Agricultural University, 2020, 41(6): 119-125. DOI: 10.7671/j.issn.1001-411X.202009015

A nondestructive detection method for single maize seed germination rate based on photoacoustic spectrum deep scanning

More Information
  • Received Date: September 06, 2020
  • Available Online: May 17, 2023
  • Objective 

    In view of the problem that the existed rapid and non-destructive maize seed germination rate testing methods are easily affected by the color of seed skin, the photoacoustic spectroscopy deep scanning technology was proposed to improve the detection accuracy of maize seed germination rate.

    Method 

    Six maize cultivar seeds with three different colors were selected and treated using artificial aging method to obtain eight kinds of maize seeds with different aging time. The photoacoustic spectrum information with seven different depths was obtained by modulating the spectral frequency. The best scanning frequency and characteristic spectrum were determined by principal component analysis method. Different modeling approaches including partial least squares regression, back propagation neural network, generalized regression neural network and support vector regression were applied for comparing the prediction accuracy to optimize maize seed germination rate model.

    Result 

    The best scanning frequency of photoacoustic spectrum was 500 Hz. The prediction model accuracy of support vector regression was the highest, and the correlation coefficients were all over 0.980 0. The prediction correlation coefficients of germination rates of six maize cultivar seeds were 0.983 8, 0.984 7, 0.983 6, 0.987 8, 0.983 3 and 0.994 7 respectively, while that of the mixed six cultivar maize seeds reached 0.942 1.

    Conclusion 

    Through expanding the spectrum, sound and depth information, the photoacoustic spectrum depth scanning technology has a good generalization ability, and is suitable for high-precision germination rate detection of maize with different colors.

  • [1]
    RAJJOU L, DUVAL M, GALLARDO K, et al. Seed germination and vigor[J]. Annu Rev Plant Biol, 2012, 63: 507-533. doi: 10.1146/annurev-arplant-042811-105550
    [2]
    沈宇峰, 王志安, 俞旭平, 等. 白术种子生活力测定方法及其与发芽率的相关性研究[J]. 中国中药杂志, 2008(3): 248-250. doi: 10.3321/j.issn:1001-5302.2008.03.006
    [3]
    HIBBARD R P, MILLER E V. Biochemical studies on seed viability: I: Measurements of conductance and reduction[J]. Plant Physiol, 1928, 3(3): 335-352. doi: 10.1104/pp.3.3.335
    [4]
    闫彬, 杨福增, 郭文川. 基于机器视觉技术检测裂纹玉米种子[J]. 农机化研究, 2020, 42(5): 181-185. doi: 10.3969/j.issn.1003-188X.2020.05.031
    [5]
    KUSUMANINGRUM D, LEE H, LOHUMI S, et al. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy[J]. J Sci Food Agric, 2018, 98(5): 1734-1742. doi: 10.1002/jsfa.8646
    [6]
    KIMULI D, WANG W, LAWRENCE K C, et al. Utilisation of visible/near-infrared hyperspectral images to classify aflatoxin B1 contaminated maize kernels[J]. Biosyst Eng, 2018, 166: 150-160. doi: 10.1016/j.biosystemseng.2017.11.018
    [7]
    FENG L, ZHU S S, ZHANG C, et al. Identification of maize kernel vigor under different accelerated aging times using hyperspectral imaging[J/OL]. Molecules (Basel, Switzerland), 2018, 23(12): 3078. [2020-07-25]. https://doi.org/10.3390/molecules23123078.
    [8]
    赵欣欣, 刘继权, 王奇. 玉米种子对高温高湿老化的响应研究[J]. 吉林农业科学, 2015, 40(2): 11-15.
    [9]
    HERNÁNDEZ-AGUILAR C, DOMÍNGUEZ-PACHECO A, CRUZ-OREA A, et al. Depth profiles in maize (Zea mays L.) seeds studied by photoacoustic spectroscopy[J]. Int J Thermophys, 2015, 36(5/6): 891-899.
    [10]
    魏旭彤. 玉米种子活力影响因素研究[D]. 哈尔滨: 东北农业大学, 2018.
    [11]
    中华人民共和国农业部, 全国农作物种子标准化技术委员会. 农作物种子检验规程 发芽试验: GB/T 3543.4—1995[S]. 北京: 国家技术监督局, 1995.
    [12]
    TIAN Z D, LI S J, WANG Y H, et al. A prediction approach using ensemble empirical mode decomposition-permutation entropy and regularized extreme learning machine for short-term wind speed[J]. Wind Energy, 2020, 23(2): 177-206. doi: 10.1002/we.2422
    [13]
    郭明军, 李伟光, 杨期江, 等. 基于SVD原理的PCA特征频率提取算法及其应用[J]. 华南理工大学学报(自然科学版), 2020, 48(1): 1-9.
    [14]
    SILVA G P, SALES J F, NASCIMENTO K J T, et al. Biochemical and physiological changes in Dipteryx alata Vog. seeds during germination and accelerated aging[J]. South African J Bot, 2020, 131: 84-92. doi: 10.1016/j.sajb.2020.02.007
    [15]
    鲜萱, 齐传东, 陈琦, 等. 人工老化处理对菠菜种子生理生化指标及萌发相关基因表达量的影响[J]. 中国农业大学学报, 2019, 24(3): 45-53.
    [16]
    陆宇振, 杜昌文, 余常兵, 等. 红外光声光谱法测定油菜籽品质参数[J]. 分析化学, 2014, 42(2): 293-297.
    [17]
    BRYŚ A, BRYŚ J, MELLADO Á F, et al. Characterization of oil from roasted hemp seeds using the PDSC and FTIR techniques[J/OL]. J Therm Anal Calorim, 2019, 138(4): 2781-2786. [2020-07-25]. https://doi.org/10.1007/s10973-019-08640-8.
    [18]
    LÜ G Q, DU C W, MA F, et al. In situ detection of rice leaf cuticle responses to nitrogen supplies by depth-profiling Fourier transform photoacoustic spectroscopy[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc, 2020, 228: 117759. [2020-07-25]. https://doi.org/10.1016/j.saa.2019.117759.

Catalog

    Article views (1010) PDF downloads (900) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return