LONG Teng, LI Jiyu, LONG Yongbing, et al. Spectral response and intelligent classification of wheat leaves under powdery mildew stress[J]. Journal of South China Agricultural University, 2021, 42(3): 86-93. DOI: 10.7671/j.issn.1001-411X.202009001
    Citation: LONG Teng, LI Jiyu, LONG Yongbing, et al. Spectral response and intelligent classification of wheat leaves under powdery mildew stress[J]. Journal of South China Agricultural University, 2021, 42(3): 86-93. DOI: 10.7671/j.issn.1001-411X.202009001

    Spectral response and intelligent classification of wheat leaves under powdery mildew stress

    More Information
    • Received Date: August 31, 2020
    • Available Online: May 17, 2023
    • Objective 

      The response of wheat spectrum to powdery mildew stress based on hyperspectral technique was studied in order to determine the infection grade of powdery mildew quickly.

      Method 

      The visible-near infrared spectra of wheat leaves were collected by fiber optic spectrometer combined with a integrating sphere and a leaf clip. The spectrum fitting SPAD (SF-SPAD) value was used to reflect the chlorophyll content, so as to preliminarily determine the infection of powdery mildew. Spectral sensitivity analysis was performed using PROSPECT model to identify sensitive bands. We combined dimension reduction by principal component analysis (PCA) and support vector machine (SVM) modeling to realize binary classification of spectral data. The infection degree of wheat was graded according to the percentage of disease spots determined by the PCA-SVM binary classification model.

      Result 

      The SF-SPAD value increased with the increase of leaf order from bottom to top. Spots with SF-SPAD values less than 0.90 were disease spots, while spots with SF-SPAD values above 1.05 were good spots. The spectral sensitivity analysis identified the sensitive bands as 440−500 and 540−780 nm in the visible region, and therefore reduced the data dimension. The relationship between the infection grade (R) and the percentage of disease spots was determined as R1: 0−30%,R2: 30%−50%,R3: 50%−70%,R4: 70%−100%. The model established in this assay was suitable when the number of tested plants was above 20.

      Conclusion 

      The monitoring model based on SF-SPAD and spectral PCA-SVM binary classification can accurately and rapidly determine the infection of wheat powdery mildew and the infection grade, reduce the number of samples, reduce the workload of detection on the ground, and improve the detection efficiency. The monitoring model is an intelligent monitoring technology which is practical, simple and easy to popularize.

    • [1]
      冯伟, 王晓宇, 宋晓, 等. 白粉病胁迫下小麦冠层叶绿素密度的高光谱估测[J]. 农业工程学报, 2013, 29(13): 114-123. doi: 10.3969/j.issn.1002-6819.2013.13.016
      [2]
      杜世州. 基于多源数据小麦白粉病遥感监测研究[D]. 合肥: 安徽农业大学, 2013.
      [3]
      沈文颖, 李映雪, 冯伟, 等. 基于因子分析-BP神经网络的小麦叶片白粉病反演模型[J]. 农业工程学报, 2015, 31(22): 183-190. doi: 10.11975/j.issn.1002-6819.2015.22.025
      [4]
      张竞成, 袁琳, 王纪华, 等. 作物病虫害遥感监测研究进展[J]. 农业工程学报, 2012, 28(20): 1-11.
      [5]
      冯伟, 王晓宇, 宋晓, 等. 基于冠层反射光谱的小麦白粉病严重度估测[J]. 作物学报, 2013, 39(8): 1469-1477.
      [6]
      刘鹏. 基于高光谱技术的植物分类及状态监测方法研究[D]. 杭州: 杭州电子科技大学, 2019.
      [7]
      黄木易, 王纪华, 黄文江, 等. 冬小麦条锈病的光谱特征及遥感监测[J]. 农业工程学报, 2003, 19(6): 154-158. doi: 10.3321/j.issn:1002-6819.2003.06.037
      [8]
      RIEDELL W E, BLACKMER T M. Leaf reflectance spectra of cereal aphid-damaged wheat[J]. Crop Science, 1999, 39(6): 1835-1840. doi: 10.2135/cropsci1999.3961835x
      [9]
      GRAEFF S, LINK J, CLAUPEIN W. Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements[J]. Central European Journal of Biology, 2006, 1(2): 275-288.
      [10]
      FRANKE J, MENZ G. Multi-temporal wheat disease detection by multi-spectral remote sensing[J]. Precision Agriculture, 2007, 8(3): 161-172. doi: 10.1007/s11119-007-9036-y
      [11]
      姚志凤, 雷雨, 何东健. 基于高光谱成像的小麦白粉病与条锈病识别[J]. 光谱学与光谱分析, 2019, 39(3): 969-976.
      [12]
      袁琳, 张竞成, 赵晋陵, 等. 基于叶片光谱分析的小麦白粉病与条锈病区分及病情反演研究[J]. 光谱学与光谱分析, 2013, 33(6): 1608-1614. doi: 10.3964/j.issn.1000-0593(2013)06-1608-07
      [13]
      梁栋, 刘娜, 张东彦, 等. 利用成像高光谱区分冬小麦白粉病与条锈病[J]. 红外与激光工程, 2017, 46(1): 50-58.
      [14]
      沈文颖, 冯伟, 李晓, 等. 基于叶片高光谱特征的小麦白粉病严重度估算模式[J]. 麦类作物学报, 2015, 35(1): 129-137. doi: 10.7606/j.issn.1009-1041.2015.01.020
      [15]
      王晓宇, 冯伟, 王永华, 等. 小麦白粉病严重度与植株生理性状及产量损失的关系[J]. 麦类作物学报, 2012, 32(6): 1192-1198. doi: 10.7606/j.issn.1009-1041.2012.06.032
      [16]
      雷祥祥, 赵静, 刘厚诚, 等. 基于PROSPECT模型的蔬菜叶片叶绿素含量和SPAD值反演[J]. 光谱学与光谱分析, 2019, 39(10): 3256-3260.
      [17]
      吴伶, 刘湘南, 周博天, 等. 利用PROSPECT+SAIL模型反演植物生化参数的植被指数优化模拟[J]. 应用生态学报, 2012, 23(12): 3250-3256.
      [18]
      王洋, 肖文, 邹焕成, 等. 基于PROSPECT模型的植物叶片干物质估测建模研究[J]. 沈阳农业大学学报, 2018, 49(1): 121-127.
      [19]
      王鑫, 张鑫, 宁晨. 基于多特征降维和迁移学习的红外人体目标识别方法[J]. 计算机应用, 2019, 39(12): 3490-3495.
      [20]
      程术希, 邵咏妮, 吴迪, 等. 稻叶瘟染病程度的可见-近红外光谱检测方法[J]. 浙江大学学报(农业与生命科学版), 2011, 37(3): 307-311.
      [21]
      竞霞, 黄文江, 王纪华, 等. 棉花单叶黄萎病病情严重度高光谱反演模型研究[J]. 光谱学与光谱分析, 2009, 29(12): 3348-3352. doi: 10.3964/j.issn.1000-0593(2009)12-3348-05
    • Related Articles

      [1]DING Yanzhe, DU Licai, SUN Zhuo, YANG Limin, HAN Zhongming, WANG Yunhe, LIU Zijun, ZHANG Hao. Isolation, screening and indoor control effect of biocontrol bacteria against Acanthopanax senticosus black spot[J]. Journal of South China Agricultural University, 2024, 45(2): 266-272. DOI: 10.7671/j.issn.1001-411X.202302013
      [2]WANG Yan, ZHANG Fujun, SUN Zhuo, MA Fengmin, HAN Zhongming, ZHAO Shujie, WANG Yunhe, HAN Mei, YANG Limin. Screening, identification and biological control effect of antagonistic fungus against fusarium wilt of Saposhnikovia divaricata[J]. Journal of South China Agricultural University, 2023, 44(2): 263-269. DOI: 10.7671/j.issn.1001-411X.202203035
      [3]CHEN Wei, YUAN Wenjing, GUAN Xue, HU Qiongbo. Biodiversity of Isaria in soil and its activity against Phyllotreta striolata[J]. Journal of South China Agricultural University, 2021, 42(4): 75-82. DOI: 10.7671/j.issn.1001-411X.202012012
      [4]PENG Zhengqiang, LÜ Baoqian, QIN Weiquan, LI Zhaoxu, WEN Haibo. Ecology basis and control technology system of invasion and outbreak of alien pest Brontispa longissima[J]. Journal of South China Agricultural University, 2019, 40(5): 161-165. DOI: 10.7671/j.issn.1001-411X.201905077
      [5]DAI Xiaoyan, LI Yihan, SHEN Zule, XU Weiming, WU Jianhui, REN Shunxiang, QIU Baoli. The biocontrol effects of Beauveria bassiana and Isaria fumosorosea on Asian citrus psyllid[J]. Journal of South China Agricultural University, 2017, 38(1): 63-68. DOI: 10.7671/j.issn.1001-411X.2017.01.011
      [6]YU Jin-yong,SHEN Shu-ping,WU Wei-jian, MA Feng-mei. Releases of Campylomma chinensis(Hemiptera: Miridae) to control pests of eggplant[J]. Journal of South China Agricultural University, 2005, 26(4): 27-29. DOI: 10.7671/j.issn.1001-411X.2005.04.007
      [7]LU Yong-yue,LIANG Guang-wen. Control efficience of Metarhizium anisopliae on the banana pseudostem weevil (Odoiporus longicollis)[J]. Journal of South China Agricultural University, 2004, 25(3): 70-72. DOI: 10.7671/j.issn.1001-411X.2004.03.020
      [8]Dong Chun, Zeng Xianming, Liu Qiongguang. Biological Control of Tomato Bacterial Wilt with Avirulent Bacteriocinogenic Strain of Ralstonia solanacearum[J]. Journal of South China Agricultural University, 1999, (4): 1-4.
      [9]Luo Qihao Tan Changqing Chen Zhiling Li Zhiyong Li Xiaolin. A STUDY ON BIOLOGICL CONTROL OF LITCHIPARA-STEM BORER( Metarbelidae ) AND LONGICORN BEETLE ( Cerambycidae ) BY NEMATODES[J]. Journal of South China Agricultural University, 1997, (1): 25-30.
      [10]Xian Jidong Zhang Minling Pang Xiongfei. SIMULATION OF THE COMPLEMENTARY EFFECT OF THE BIOLOGICAL AGENTS ON DIAMOND BACK MOTH[J]. Journal of South China Agricultural University, 1997, (1): 1-5.

    Catalog

      Article views (868) PDF downloads (1010) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return