Citation: | LU Jianqiang, LIN Jiahan, HUANG Zhongqiang, et al. Identification of citrus fruit infected with Huanglongbing based on Mixup algorithm and convolutional neural network[J]. Journal of South China Agricultural University, 2021, 42(3): 94-101. DOI: 10.7671/j.issn.1001-411X.202008041 |
The traditional image recognition method relies on manual design features, is time-consuming and labor-intensive, has large number of network model parameter and has low recognition accuracy rate. The goal was to solve these problems in traditional method for identifying citrus fruit infected with Huanglongbing.
Firstly, we collected the images of citrus fruit with Huanglongbing, and performed data enhancement modes such as flip, rotation, affine, and Gaussian disturbance. Further, we used the Mixup algorithm to establish a linear relationship between samples to enhance the robustness of the model for identifying data samples. Then, we transfered the prior knowledge on the ImageNet data set of Xception network, and proposed a citrus Huanglongbing fruit recognition model of X-ResNeXt model based on Mixup algorithm and convolutional neural network. Finally, the momentum gradient descent optimization method was used to reduce the impact of shocks and effectively accelerate the convergence of the model to the local optimum.
The accuracy rate of the X-ResNeXt model trained on the data set after data enhancement was 91.38%. After optimization with transfer learning, the training time reduced by 432 s, and the accuracy rate of the model increased to 91.97%. Combined with the enhancement of Mixup mixed data for further training, the accuracy rate of the model improved to 93.74%. Finally, the momentum gradient descent method was used to optimize the model convergence, and the final model accuracy rate reached 94.29%, which was 3.98% and 1.51% higher than Inception-V3 and Xception networks, respectively.
In the case of a small amount of data, reducing the complexity of the model and transfering existing prior knowledge will help to improve the performance of the model. The Mixup mixed data enhancement method is beneficial to improve the adaptability of the model to identify image samples of citrus fruit with Huanglongbing and improve model performance. The X-ResNeXt model is superior to the classic recognition model in terms of accuracy rate and recall rate, and can provide references for the high-precision, rapid and non-destructive identification of citrus Huanglongbing.
[1] |
YAN X J, YUAN H Z, ZHOU X X. Control efficacy of different pesticide formulations and fan-nozzle model on wheat aphids by UAVs[J]. International Journal of Precision Agricultural Aviation, 2020, 3(2): 35-39.
|
[2] |
范国成, 刘波, 吴如健, 等. 中国柑橘黄龙病研究30年[J]. 福建农业学报, 2009, 24(2): 183-190. doi: 10.3969/j.issn.1008-0384.2009.02.019
|
[3] |
谢钟琛, 李健, 施清, 等. 福建省柑橘黄龙病危害及其流行规律研究[J]. 中国农业科学, 2009, 42(11): 3888-3897. doi: 10.3864/j.issn.0578-1752.2009.11.016
|
[4] |
邓小玲, 郑建宝, 梅慧兰, 等. 基于高光谱成像技术的柑橘黄龙病病情诊断及分类[J]. 西北农林科技大学学报(自然科学版), 2013, 41(7): 99-105.
|
[5] |
邓小玲, 林亮生, 兰玉彬. 基于调制荧光检测技术的柑橘黄龙病诊断[J]. 华南农业大学学报, 2016, 37(2): 113-116. doi: 10.7671/j.issn.1001-411X.2016.02.018
|
[6] |
马淏, 吉海彦, WON S L. 基于高光谱成像技术应用光谱及纹理特征识别柑橘黄龙病[J]. 光谱学与光谱分析, 2016, 36(7): 2344-2350.
|
[7] |
王克健. 柑橘黄龙病光谱检测与柑橘木虱UAV防控技术探索[D]. 重庆: 西南大学, 2018.
|
[8] |
肖怀春. 基于高光谱成像技术的柑橘黄龙病诊断方法研究[D]. 南昌: 华东交通大学, 2019.
|
[9] |
戴泽翰, 郑正, 黄莉舒, 等. 基于深度卷积神经网络的柑橘黄龙病症状识别[J]. 华南农业大学学报, 2020, 41(4): 111-119. doi: 10.7671/j.issn.1001-411X.201909031
|
[10] |
陈波, 姚林建. 光谱检测技术在柑橘黄龙病诊断中的研究进展[J]. 赣南师范大学学报, 2018, 39(6): 69-72.
|
[11] |
黄志强, 李军. 基于卷积神经网络的图像识别研究综述[J]. 汽车工程师, 2020(10): 11-13. doi: 10.3969/j.issn.1674-6546.2020.10.003
|
[12] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
[13] |
郑二功, 田迎芳, 陈涛. 基于深度学习的无人机影像玉米倒伏区域提取[J]. 河南农业科学, 2018, 47(8): 155-160.
|
[14] |
卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17.
|
[15] |
ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: Beyond empirical risk minimization[EB/OL]. [2020-06-15]. https://arxiv.org/pdf/1710.09412.pdf.
|
[16] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[17] |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987-5995.
|
[18] |
CHOLLET F. Xception: Deep learning with depth wise separable convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807.
|
[19] |
DONAHUE J, JIA Y, VINYALS O, et al. DeCAF: A deep convolutional activation feature for generic visual recognition[J]. Computer Science, 2013. arXiv: 1310.1531.
|
[20] |
ALEX K, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communication of the ACM, 2012: 84-90.
|
[21] |
SUTSKEVER I, MARTENS G, DAHI G, et al. On the importance of initialization and momentum in deep learning[EB/OL]. [2020-06-15]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6C87CA259F724D8BDDFA5E3B2C0F10F2?doi=10.1.1.352.8324&rep=rep1&type=pdf.
|
[22] |
胡子昂, 王卫星, 陆健强, 等. 视频图像去雾霾技术研究综述与展望[J]. 电子技术与软件工程, 2015(22): 94-95.
|
[23] |
薛月菊, 黄宁, 涂淑琴, 等. 未成熟芒果的改进YOLOv2识别方法[J]. 农业工程学报, 2018, 34(7): 173-179. doi: 10.11975/j.issn.1002-6819.2018.07.022
|