• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
FAN Xiangpeng, ZHOU Jianping, XU Yan. Recognition of field maize leaf diseases based on improved regional convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(6): 82-91. DOI: 10.7671/j.issn.1001-411X.202008022
Citation: FAN Xiangpeng, ZHOU Jianping, XU Yan. Recognition of field maize leaf diseases based on improved regional convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(6): 82-91. DOI: 10.7671/j.issn.1001-411X.202008022

Recognition of field maize leaf diseases based on improved regional convolutional neural network

More Information
  • Received Date: August 11, 2020
  • Available Online: May 17, 2023
  • Objective 

    To realize intelligent diagnosis of maize leaf diseases with similar spots and complicated background in real field conditions by introducing and improving a regional convolutional neural network algorithm, Faster R-CNN.

    Method 

    We obtained 1 150 maize leaf images with complicated background for nine kinds of common diseases from maize field and public dataset websites. After manual annotation of the original images, offline data augmentation was used to enlarge the image data. The Faster R-CNN algorithm was introduced and improved for adaptive application by adding batch normalization processing layer and introducing center cost function to improve the identification accuracy of similar disease spots. We used the stochastic gradient descent algorithm to train and optimize this model. Four pre-trained convolution structures for feature extraction were selected and compared in Faster R-CNN training and testing to get the most optimal model. During the test, the trained model was used to select test sets under different weather conditions for comparison, and improved Faster R-CNN was also compared with unimproved Faster R-CNN and SSD algorithm.

    Result 

    In the framework of improved Faster R-CNN, VGG16 convolutional feature extraction network had better performance than others. The testing image data set was used to verify the model performance, and the average precision of final recognition result was 0.971 8, the average recall rate was 0.971 9, F1 was 0.971 8, and the overall average accuracy reached 97.23%. The recognition effect under sunny conditions was better than that of cloudy conditions. The average precision of improved Faster R-CNN increased by 0.088 6 and the detection time per image decreased by 0.139 s compared with unimproved Faster R-CNN algorithm. The average precision of proposed method was 0.0425 higher than that of SSD algorithm, and the detection time per image decreased by 0.018 s. The results indicated that the improved Faster R-CNN algorithm was superior to unimproved Faster R-CNN and SSD algorithm in the field of intelligent detection of maize diseases under complex field conditions.

    Conclusion 

    It is feasible to introduce improved Faster R-CNN algorithm into the intelligent diagnosis of maize diseases under complex field conditions, and it has higher accuracy and faster detection speed, which can avoid the subjectivity of traditional artificial identification. The proposed method lays a foundation for precise prevention and control of maize disease in field environment.

  • [1]
    许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236. doi: 10.6041/j.issn.1000-1298.2020.02.025
    [2]
    李静, 陈桂芬, 安宇. 基于优化卷积神经网络的玉米螟虫害图像识别[J]. 华南农业大学学报, 2020, 41(3): 110-116. doi: 10.7671/j.issn.1001-411X.201907017
    [3]
    SINGH A K, GANAPATHYSUBRAMANIAN B, SARKAR S, et al. Deep learning for plant stress phenotyping: Trends and future perspectives[J]. Trends Plant Sci, 2018, 23(10): 883-898. doi: 10.1016/j.tplants.2018.07.004
    [4]
    张明, 王腾, 李鹏, 等. 基于区域亮度自适应校正算法的脐橙表面缺陷检测[J]. 中国农业科学, 2020, 53(12): 2360-2370. doi: 10.3864/j.issn.0578-1752.2020.12.005
    [5]
    张芳, 王璐, 付立思, 等. 基于支持向量机的黄瓜叶部病害的识别研究[J]. 沈阳农业大学学报, 2014, 45(4): 457-462. doi: 10.3969/j.issn.1000-1700.2014.04.014
    [6]
    张开兴, 吕高龙, 贾浩, 等. 基于图像处理和BP神经网络的玉米叶部病害识别[J]. 中国农机化学报, 2019, 40(8): 122-126.
    [7]
    党满意, 孟庆魁, 谷芳, 等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报, 2020, 36(2): 193-200. doi: 10.11975/j.issn.1002-6819.2020.02.023
    [8]
    SINGH V, MISRA A K. Detection of plant leaf diseases using image segmentation and soft computing techniques[J]. Information Processing in Agriculture, 2016, 4(1): 41-49.
    [9]
    赖君臣, 李少昆, 明博, 等. 作物病害机器视觉诊断研究进展[J]. 中国农业科学, 2009, 42(4): 1215-1221. doi: 10.3864/j.issn.0578-1752.2009.04.012
    [10]
    刘涛, 仲晓春, 孙成明, 等. 基于计算机视觉的水稻叶部病害识别研究[J]. 中国农业科学, 2014, 47(4): 664-674. doi: 10.3864/j.issn.0578-1752.2014.04.006
    [11]
    毛彦东, 宫鹤. 基于SVM和DS证据理论融合多特征的玉米病害识别研究[J]. 中国农机化学报, 2020, 41(4): 152-157.
    [12]
    赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191. doi: 10.11975/j.issn.1002-6819.2020.07.021
    [13]
    姜洪权, 贺帅, 高建民, 等. 一种改进卷积神经网络模型的焊缝缺陷识别方法[J]. 机械工程学报, 2020, 56(8): 235-242.
    [14]
    董秋成, 吴爱国, 董娜, 等. 用于卷积神经网络图像预处理的目标中心化算法[J]. 中南大学学报(自然科学版), 2019, 50(3): 89-96.
    [15]
    BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization[J]. Appl Artif Intell, 2017, 31(4): 299-315. doi: 10.1080/08839514.2017.1315516
    [16]
    FERENTINOS K P. Deep learning models for plant disease detection and diagnosis[J]. Comput Electron Agr, 2018, 145: 311-318. doi: 10.1016/j.compag.2018.01.009
    [17]
    孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. doi: 10.11975/j.issn.1002-6819.2017.19.027
    [18]
    龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201. doi: 10.11975/j.issn.1002-6819.2018.18.024
    [19]
    KERKECH M, HAFIANE A, CANALS R. Deep learning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images[J]. Comput Electron Agr, 2018, 155(12): 237-243.
    [20]
    戴泽翰, 郑正, 黄莉舒, 等. 基于深度卷积神经网络的柑橘黄龙病症状识别[J]. 华南农业大学学报, 2020, 41(4): 111-119. doi: 10.7671/j.issn.1001-411X.201909031
    [21]
    李淼, 王敬贤, 李华龙, 等. 基于 CNN 和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3): 46-55.
    [22]
    杨森, 冯全, 张建华, 等. 基于深度学习与复合字典的马铃薯病害识别方法[J]. 农业机械学报, 2020, 51(7): 22-29. doi: 10.6041/j.issn.1000-1298.2020.07.003
    [23]
    TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Comput Electron Agr, 2019(161): 272-279.
    [24]
    鲍文霞, 孙庆, 胡根生, 等. 基于多路卷积神经网络的大田小麦赤霉病图像识别[J]. 农业工程学报, 2020, 36(11): 174-181. doi: 10.11975/j.issn.1002-6819.2020.11.020
    [25]
    任守纲, 贾馥玮, 顾兴健, 等. 反卷积引导的番茄叶部病害识别及病斑分割模型[J]. 农业工程学报, 2020, 36(12): 186-195. doi: 10.11975/j.issn.1002-6819.2020.12.023
    [26]
    宋余庆, 谢熹, 刘哲, 等. 基于多层特征融合的农作物病虫害识别方法[DB/OL].[2020-06-09]. http://kns.cnki.net/kcms/detail/11.1964.S.20200515.1754.010.html.
    [27]
    王晓鸣, 段灿星. 玉米病害和病原名称整理及其汉译名称规范化探讨[J]. 中国农业科学, 2020, 53(2): 288-316. doi: 10.3864/j.issn.0578-1752.2020.02.006
    [28]
    REN S, HE K M, GIRSHICK R, et al. Faster R- CNN: Towards real-time object detection with region proposal net-works[C]//NIPS. Proceedings of Advances in Neural Information Processing Systems. Montreal, Quebec, Canada: NIPS, 2015: 91-99.
  • Cited by

    Periodical cited type(16)

    1. 陈金荣,许燕,周建平,王小荣. 基于改进YOLOv5的红花目标检测算法研究. 农机化研究. 2025(01): 26-32+66 .
    2. 胡雯婧,余俊龙,梁雷,张静,董卫彬,蒋龙泉. 基于计算机视觉的农作物病虫害识别研究综述. 微型电脑应用. 2025(03): 90-93+97 .
    3. 郭标琦,王联国. 基于多卷积神经网络融合的当归病虫害识别方法. 江苏农业学报. 2024(01): 121-129 .
    4. 杨巨成,燕聪,贾庆祥,沈杰,刘建征. 基于图像超分辨率预处理和二次迁移学习的水稻病害识别方法. 天津科技大学学报. 2024(06): 66-74 .
    5. 李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 .
    6. 刘岩,张宁宁,海玲,王斌虎. 基于机器视觉的玉米虫害区域SIFT识别仿真. 计算机仿真. 2023(07): 215-219 .
    7. 王营瑛,郑铖,董伟,高海涛. 一种基于改进卷积神经网络的玉米病害高效识别模型. 安徽科技学院学报. 2023(04): 96-104 .
    8. 孙道宗,刘欢,刘锦源,丁郑,谢家兴,王卫星. 基于改进YOLOv4模型的茶叶病害识别. 西北农林科技大学学报(自然科学版). 2023(09): 145-154 .
    9. 范世达,马伟荣,姜文博,张辉,王金振,李琦,何鹏博,彭磊,黄兆波. 基于深度学习的柑橘黄龙病远程诊断技术初探. 中国果树. 2022(04): 76-79+86+133 .
    10. 刘延鑫,王俊峰,杜传印,丁睿柔,高强,宗浩,姜红花. 基于YOLOv3的多类烟草叶部病害检测研究. 中国烟草科学. 2022(02): 94-100 .
    11. 冼远清. 改进的YOLOv3常见鱼病检测算法. 福建电脑. 2022(07): 11-14 .
    12. 郭文娟,冯全,李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展. 中国农机化学报. 2022(10): 157-166 .
    13. 何前,郭峰林,方皓正,李雅琴. 基于改进LeNet-5模型的玉米病害识别. 江苏农业科学. 2022(20): 35-41 .
    14. 伏荣桃,王剑,陈诚,李洪浩,赵黎宇,卢代华. 基于深度学习的水稻稻曲病图像识别与分级鉴定. 四川农业科技. 2022(10): 35-40 .
    15. 樊湘鹏,周建平,许燕,李开敬,温德圣. 基于优化Faster R-CNN的棉花苗期杂草识别与定位. 农业机械学报. 2021(05): 26-34 .
    16. 郭阳,许贝贝,陈桂鹏,丁建,严志雁,梁华,吴昌华. 基于卷积神经网络的水稻虫害识别方法. 中国农业科技导报. 2021(11): 99-109 .

    Other cited types(26)

Catalog

    Article views (1251) PDF downloads (1347) Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return