• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
YU Fenghua, FENG Shuai, ZHAO Yiran, et al. Inversion model of chlorophyll content in japonica rice canopy based on PSO-ELM and hyper-spectral remote sensing[J]. Journal of South China Agricultural University, 2020, 41(6): 59-66. DOI: 10.7671/j.issn.1001-411X.202007044
Citation: YU Fenghua, FENG Shuai, ZHAO Yiran, et al. Inversion model of chlorophyll content in japonica rice canopy based on PSO-ELM and hyper-spectral remote sensing[J]. Journal of South China Agricultural University, 2020, 41(6): 59-66. DOI: 10.7671/j.issn.1001-411X.202007044

Inversion model of chlorophyll content in japonica rice canopy based on PSO-ELM and hyper-spectral remote sensing

More Information
  • Received Date: July 30, 2020
  • Available Online: May 17, 2023
  • Objective 

    Chlorophyll content is an important indicator of the growth status of japonica rice. This study was aimed at obtaining chlorophyll content of japonica rice in a regional scale in time with UAV hyper-spectral remote sensing technology.

    Method 

    This study was based on the UAV remote sensing test data of japonica rice in Liaozhong Experiment Station of Shenyang Agricultural University from 2016 to 2017. The successive projection algorithm (SPA) was used to extract the effective bands including 410, 481, 533, 702 and 798 nm. The extracted characteristic bands were used as the input, and the inversion models of chlorophyll contents in japonica rice canopy were established respectively using the extreme learning machine (ELM) and particle swarm optimization-extreme learning machine (PSO-ELM). In the PSO-ELM model, five parameters of PSO algorithm including proportion of population (p), inertial weight (w), learning factors (C1, C2), and velocity position correlation coefficient (m) were optimized.

    Result 

    The optimal parameters were determined: p was 80, w was from 0.9 to 0.3 with a linear decline, C1 and C2 were 2.80 and 1.10 respectively, and m was 0.60. For the established models of chlorophyll content in japonica rice using the optimized ELM and PSO-ELM, the determination coefficients were 0.734 and 0.887 respectively, and the mean square error were 1.824 and 0.783 respectively.

    Conclusion 

    The inversion model for chlorophyll content in japonica rice based on the optimized PSO-ELM has higher precision compared with the model based on ELM, and has better inversion ability of chlorophyll content in japonica rice. This study provides data support and application basis for the diagnosis of chlorophyll content in japonica rice by UAV hyper-spectral remote sensing technology in Northeast China.

  • [1]
    高继平, 隋阳辉, 张文忠, 等. 生物炭对水稻秧苗生长及内源激素的影响[J]. 沈阳农业大学学报, 2017, 48(2): 145-151.
    [2]
    ROMERO M, LUO Y C, SU B F, et al. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management[J]. Comput Electron Agr, 2018, 147: 109-117. doi: 10.1016/j.compag.2018.02.013
    [3]
    KONG W P, HUANG W J, ZHOU X F, et al. Off-nadir hyperspectral sensing for estimation of vertical profile of leaf chlorophyll content within wheat canopies[J]. Sensors, 2017, 17(12): 2711. doi: 10.3390/s17122711.
    [4]
    尼加提·卡斯木, 师庆东, 王敬哲, 等. 基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算[J]. 农业工程学报, 2017, 33(22): 208-216. doi: 10.11975/j.issn.1002-6819.2017.22.027
    [5]
    毛博慧, 李民赞, 孙红, 等. 冬小麦苗期叶绿素含量检测光谱学参数寻优[J]. 农业工程学报, 2017, 33(S1): 164-169. doi: 10.11975/j.issn.1002-6819.2017.z1.025
    [6]
    孙红, 郑涛, 刘宁, 等. 高光谱图像检测马铃薯植株叶绿素含量垂直分布[J]. 农业工程学报, 2018, 34(1): 149-156. doi: 10.11975/j.issn.1002-6819.2018.01.20
    [7]
    裴浩杰, 冯海宽, 李长春, 等. 基于综合指标的冬小麦长势无人机遥感监测[J]. 农业工程学报, 2017, 33(20): 74-82. doi: 10.11975/j.issn.1002-6819.2017.20.010
    [8]
    YU F H, XU T Y, DU W, et al. Radiative transfer models (RTMs) for field phenotyping inversion of rice based on UAV hyperspectral remote sensing[J]. Int J Agr Biol Eng, 2017, 10(4): 150-157.
    [9]
    YU F H, XU T Y, CAO Y L, et al. Models for estimating the leaf NDVI of japonica rice on a canopy scale by combining canopy NDVI and multisource environmental data in Northeast China[J]. Int J Agr Biol Eng, 2016, 9(5): 132-142.
    [10]
    姜海玲, 杨杭, 陈小平, 等. 利用光谱指数反演植被叶绿素含量的精度及稳定性研究[J]. 光谱学与光谱分析, 2015, 35(4): 975-981. doi: 10.3964/j.issn.1000-0593(2015)04-0975-07
    [11]
    KJÆR A, NIELSEN G, STÆRKE S, et al. Detection of glycoalkaloids and chlorophyll in potatoes (Solanum tuberosum L.) by hyperspectral imaging[J]. Am J Potato Res, 2017, 94(6): 573-582. doi: 10.1007/s12230-017-9595-z
    [12]
    姚云军, 秦其明, 张自力, 等. 高光谱技术在农业遥感中的应用研究进展[J]. 农业工程学报, 2008, 24(7): 301-306. doi: 10.3321/j.issn:1002-6819.2008.07.063
    [13]
    牛庆林, 冯海宽, 杨贵军, 等. 基于无人机数码影像的玉米育种材料株高和 LAI 监测[J]. 农业工程学报, 2018, 34(5): 73-82. doi: 10.11975/j.issn.1002-6819.2018.05.010
    [14]
    赵晓庆, 杨贵军. 基于无人机载高光谱空间尺度优化的大豆育种产量估算[J]. 农业工程学报, 2017, 33(1): 110-116. doi: 10.11975/j.issn.1002-6819.2017.01.015
    [15]
    谢凯, 蒋蘋, 罗亚辉, 等. 稻瘟病胁迫下水稻叶片叶绿素含量与光谱特征参数的相关性研究[J]. 中国农学通报, 2017, 33(17): 117-122. doi: 10.11924/j.issn.1000-6850.casb17030124
    [16]
    落莉莉, 常庆瑞, 武旭梅, 等. 夏玉米叶片光合色素含量高光谱估算[J]. 干旱地区农业研究, 2019, 37(4): 178-183. doi: 10.7606/j.issn.1000-7601.2019.04.24
    [17]
    王洋, 肖文, 邹焕成, 等. 基于PROSPECT模型的植物叶片干物质估测建模研究[J]. 沈阳农业大学学报, 2018, 49(1): 121-127.
    [18]
    许童羽, 郭忠辉, 于丰华, 等. 采用GA-ELM的寒地水稻缺氮量诊断方法[J]. 农业工程学报, 2020, 36(2): 209-218. doi: 10.11975/j.issn.1002-6819.2020.02.025
    [19]
    DE ALMEIDA V E, DE ARAÚJO GOMES A, DE SOUSA FERNANDES D D, et al. Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm[J]. Talanta, 2018, 181: 38-43. doi: 10.1016/j.talanta.2017.12.064
    [20]
    刘明博, 唐延林, 李晓利, 等. 水稻叶片氮含量光谱监测中使用连续投影算法的可行性[J]. 红外与激光工程, 2014, 43(4): 1265-1271. doi: 10.3969/j.issn.1007-2276.2014.04.044
    [21]
    于丰华, 许童羽, 郭忠辉, 等. 基于红边优化植被指数的寒地水稻叶片叶绿素含量遥感反演研究[J]. 智慧农业, 2020, 2(1): 77-86.
    [22]
    刘燕德, 肖怀春, 孙旭东, 等. 柑桔叶片黄龙病光谱特征选择及检测模型[J]. 农业工程学报, 2018, 34(3): 180-187. doi: 10.11975/j.issn.1002-6819.2018.03.024
    [23]
    张新乐, 于滋洋, 李厚萱, 等. 东北水稻叶片SPAD遥感光谱估算模型[J]. 中国农业大学学报, 2020, 25(1): 66-75.
    [24]
    SUN Y, WANG Y, XIAO H, et al. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content[J]. Food Chem, 2017, 235: 194-202. doi: 10.1016/j.foodchem.2017.05.064
    [25]
    IRTEZA S M, NICHOL J E. Measurement of sun induced chlorophyll fluorescence using hyperspectral satellite imagery[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2016, 8: 911-913.
    [26]
    付元元, 王纪华, 杨贵军, 等. 应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算[J]. 光谱学与光谱分析, 2013, 32(5): 1315-1319. doi: 10.3964/j.issn.1000-0593(2013)05-1315-05
    [27]
    孙刚, 黄文江, 陈鹏飞, 等. 轻小型无人机多光谱遥感技术应用进展[J]. 农业机械学报, 2018, 49(3): 1-17. doi: 10.6041/j.issn.1000-1298.2018.03.001
    [28]
    张建, 孟晋, 赵必权, 等. 消费级近红外相机的水稻叶片叶绿素(SPAD)分布预测[J]. 光谱学与光谱分析, 2018, 38(3): 737-744.
    [29]
    刘科, 陆键, 高梦涛, 等. 施氮量对杂交水稻叶片光谱特征、SPAD值和光能拦截率关系的影响[J]. 核农学报, 2018, 32(2): 362-369. doi: 10.11869/j.issn.100-8551.2018.02.0362
    [30]
    张建, 李勇, 谢静, 等. 针对水稻植株三维叶绿素(SPAD)信息获取的最优波段选择问题研究[J]. 光谱学与光谱分析, 2017, 37(12): 3749-3757.
    [31]
    徐晋, 蒙继华. 农作物叶绿素含量遥感估算的研究进展与展望[J]. 遥感技术与应用, 2016, 31(1): 74-85.
    [32]
    张金恒, 王娟, 韩超. 基于吸收、透射和反射光谱预测水稻叶绿素含量研究[J]. 中国农学通报, 2010, 26(7): 78-83.
  • Cited by

    Periodical cited type(7)

    1. 林子钧,尤德安,廖滔,张嘉谋,彭志锋,王红军. 基于GNSS+IMU的草方格固沙机自动巡航控制系统. 农机化研究. 2024(05): 37-44 .
    2. 何杰,魏正辉,胡炼,汪沛,黄培奎,丁帅奇. 基于两位置法与改进STEKF的农机航向角测量方法. 农业机械学报. 2024(12): 365-372 .
    3. 陈学深,熊悦淞,齐龙,王宣霖,程楠,梁俊,刘善健. 基于触感引导的小型水田行进底盘自动对行方法. 农业工程学报. 2022(21): 8-15 .
    4. 曹丽琴,王琪,黄堃,徐成杰,石云波,马宗敏,程林. 基于微机电系统传感器的杆塔倾斜度无线监测系统. 科学技术与工程. 2021(02): 616-622 .
    5. 张智刚,王明昌,毛振强,王辉,丁凡,李洪开,张天. 基于星基增强精密单点定位的农机自动导航系统开发与测试. 华南农业大学学报. 2021(06): 109-116 . 本站查看
    6. 周俊,许建康,王耀羲,梁友斌. 基于GNSS的智能水田旋耕平地机研究. 农业机械学报. 2020(04): 38-43 .
    7. 苏静. 船舶航向实时控制算法优化. 舰船科学技术. 2020(12): 55-57 .

    Other cited types(11)

Catalog

    Article views (875) PDF downloads (839) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return