• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
PENG Wen, LAN Yubin, YUE Xuejun, et al. Research on paddy weed recognition based on deep convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(6): 75-81. DOI: 10.7671/j.issn.1001-411X.202007029
Citation: PENG Wen, LAN Yubin, YUE Xuejun, et al. Research on paddy weed recognition based on deep convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(6): 75-81. DOI: 10.7671/j.issn.1001-411X.202007029

Research on paddy weed recognition based on deep convolutional neural network

More Information
  • Received Date: July 20, 2020
  • Available Online: May 17, 2023
  • Objective 

    To accurately, efficiently and non-destructively identify the weeds in rice field using deep convolutional neural network, obtain the optimal network model, and provide a theoretical basis for rice field planting management and variable drone spraying.

    Method 

    The weeds in rice field were taken as the main research object, and weed image samples were collected by CCD photosensitive camera to construct weed data set (PFMW) in rice field. The deep convolutional neural network with multiple structures was used to automatically extract the features of the PFMW data set, and then to model and test.

    Result 

    VGG16 model achieved the highest precision among all the deep learning models, the F values in Bidens, Goose Starwort, Gomphrena, Sprangle, Eclipta, Wedelia were 0.957, 0.931, 0.955, 0.955, 0.923 and 0.992 respectively, and the average F value was 0.954. The VGG16-SGD model achieved the highest precision in setted deep model optimizer experiments, the F values in each weed mentioned above were 0.987, 0.974, 0.965, 0.967, 0.989 and 0.982 respectively, and the average F value was 0.977. In the equilibrium experiments of sample category quantity in the dataset, the accuracy of the VGG16 model trained by the balanced weed dataset was 0.900, while those of the models trained by the 16.7%, 33.3% and 66.6% category imbalance dataset were 0.888, 0.866 and 0.845 respectively.

    Conclusion 

    The machine vision and other advanced technologies can accurately identify weeds in rice field. It is of great significance for promoting fine cultivation of rice field and variable drone spraying, etc., and the technology can effectively assist weed control in the process of agricultural planting.

  • [1]
    虞国平. 水稻在我国粮食安全中的战略地位分析[D]. 北京: 中国农业科学院, 2009.
    [2]
    高平磊, 郭水良, 印丽萍, 等. 影响我国杂草分布危害的性状统计分析[J]. 上海师范大学学报(自然科学版), 2010, 39(6): 623-629.
    [3]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [4]
    ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. Zurich, Switzerland: Springer, 2014: 818-833.
    [5]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE XPLORE, 2017: 2117-2125.
    [6]
    REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//IEEE. Advances in neural information processing systems. Boston, MA: IEEE XPLORE, 2015: 91-99.
    [7]
    TIAN L F, SLAUGHTER D C, Environmentally adaptive segmentation algorithm for outdoor image segmentation[J]. Comput Electron Agric, 1998, 21(3): 153-168.
    [8]
    吴国瑞. 基于图像处理的杂草种类识别技术研究[D]. 杨凌: 西北农林科技大学, 2009.
    [9]
    吴兰兰. 基于数字图像处理的玉米苗期田间杂草的识别研究[D]. 武汉: 华中农业大学, 2010.
    [10]
    夏雨. 早期玉米苗与杂草的自动辨识算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [11]
    EL-FAKI M S, ZHANG N, PETERSON D E. Weed detection using color machine vision[J]. Trans ASAE, 2000, 43(6): 1969-1978. doi: 10.13031/2013.3103
    [12]
    EL-FAKI M S, ZHANG N, PETERSON D E. Factors affecting color-based weed detection[J]. Trans ASAE, 2000, 43(4): 1001-1009. doi: 10.13031/2013.2968
    [13]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [14]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV: IEEE XPLORE, 2016: 770-778.
    [15]
    杨会清, 李明刚. 基于BP神经网络的田间杂草识别技术研究[J]. 山东理工大学学报(自然科学版), 2014, 28(2): 70-74.
    [16]
    孙俊, 何小飞, 谭文军, 等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165.
    [17]
    邓向武, 齐龙, 马旭, 等. 基于多特征融合和深度置信网络的稻田苗期杂草识别[J]. 农业工程学报, 2018, 34(14): 165-172.
    [18]
    何俐珺. 基于K-means特征学习的杂草识别研究[D]. 杨凌: 西北农林科技大学, 2016.
    [19]
    刘庆虎. 长江中下游地区直播稻田杂草种子库及千金子防控技术研究[D]. 南京: 南京农业大学, 2016.
    [20]
    王晓峰, 黄德双, 杜吉祥, 等. 叶片图像特征提取与识别技术的研究[J]. 计算机工程与应用, 2006, 3(1): 190-193.
    [21]
    OJALA T, PIETIKÄINEN M, MÄENPÄÄ T. Gray scale and rotation invariant texture classification with local binary patterns[C]//European conference on computer vision. Dublin, Ireland: Springer, 2000: 404-420.
    [22]
    许新华. 基于LBP的复杂背景下作物病害叶片病斑分割方法研究[D]. 郑州: 郑州大学, 2018.
    [23]
    TIAN L F, SLAUGHTER D C. Environmentally adaptive segmentation algorithm for outdoor image segmentation[J]. Comput Electron Agric, 1998, 21(3): 153-168. doi: 10.1016/S0168-1699(98)00037-4

Catalog

    Article views (1396) PDF downloads (2194) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return