• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
GAO Peng, XIE Jiaxing, SUN Daozong, et al. Prediction models of soil moisture content and electrical conductivity in citrus orchard based on internet of things and LSTM[J]. Journal of South China Agricultural University, 2020, 41(6): 134-144. DOI: 10.7671/j.issn.1001-411X.202007024
Citation: GAO Peng, XIE Jiaxing, SUN Daozong, et al. Prediction models of soil moisture content and electrical conductivity in citrus orchard based on internet of things and LSTM[J]. Journal of South China Agricultural University, 2020, 41(6): 134-144. DOI: 10.7671/j.issn.1001-411X.202007024

Prediction models of soil moisture content and electrical conductivity in citrus orchard based on internet of things and LSTM

More Information
  • Received Date: July 16, 2020
  • Available Online: May 17, 2023
  • Objective 

    To build an internet of things (IoT) system for transmitting the environmental information of citrus orchards in real time, establish prediction models of soil moisture content and electrical conductivity in citrus orchard based on IoT system and long short-term memory (LSTM), and provide references for irrigation and fertilization management as well as effect prediction and evaluation.

    Method 

    Soil temperature, moisture and electrical conductivity sensors were applied in five IoT nodes and a weather station was set in citrus orchard. The meteorological data and soil moisture data collected in the orchard were transmitted to a remote server via ZigBee, a short range wireless communication technique, and GPRS, a long distance wireless transmission technique. The prediction models of soil moisture content and electrical conductivity were established using weather data based on the LSTM model. The root mean square error (RMSE) and coefficient of determination (R2) were calculated to evaluate the performance of the model.

    Result 

    The IoT system was capable to transmit environmental data of the citrus orchard to a remote server. LSTM and general regression neural network (GRNN) model were built to predict soil moisture content and electrical conductivity. The performance of models in five nodes were as following: The RMSE of soil moisture content and electrical conductivity ranged from 6.74 to 8.65 and 6.68 to 8.50 respectively based on LSTM model, and ranged from 7.01 to 14.70 and 7.60 to 13.70 respectively based on GRNN model. With the generated LSTM model and meteorological data for predicting, regression analysis was conducted between predicted and measured values of soil moisture content and electrical conductivity. The R2 of soil moisture content and electrical conductivity ranged from 0.760 to 0.906 and 0.648 to 0.850 respectively based on LSTM model, and ranged from 0.126 to 0.369 and 0.132 to 0.268 respectively based on GRNN model. The results indicated that the LSTM model performed better than the GRNN model.

    Conclusion 

    The IoT system for citrus orchard environmental information transmission is established. The LSTM model has high accuracy in predicting soil moisture content and electrical conductivity, and the model can be helpful for guiding irrigation and fertilization management.

  • [1]
    成家壮, 韦小燕, 范怀忠. 广东柑橘疫霉研究[J]. 华南农业大学学报, 2004, 25(2): 31-33.
    [2]
    张超博, 李有芳, 李思静, 等. 土壤管理方式对伏旱期柑橘生长及土壤温度和水分的影响[J]. 华南农业大学学报, 2019, 40(3): 45-52.
    [3]
    肖畅, 彭婷, 刘继红. 基于WOS和CiteSpace分析我国近十年柑橘研究热点与前沿[J]. 果树学报, 2020.doi: 10.13925/j.cnki.gsxb.20200119.
    [4]
    李莉萍. 柑橘产业化经营案例分析: 评《柑橘绿色生产与产业化经营》[J]. 中国果树, 2020(3): 151.
    [5]
    罗省根, 双巧云, 陈团显, 等. 江西省柑橘出口现状及发展对策[J]. 中国果树, 2020(3): 138-140.
    [6]
    赖俊桂, 孙道宗, 王卫星, 等. 基于无线传感器网络的山地柑橘园灌溉控制系统设计与试验[J]. 江苏农业科学, 2020, 48(7): 245-249.
    [7]
    陈昱辛, 贾悦, 崔宁博, 等. 滴灌水肥一体化对柑橘叶片光合、产量及水分利用效率的影响[J]. 灌溉排水学报, 2018, 37(S2): 50-58.
    [8]
    谢家兴, 高鹏, 莫昊凡, 等. 荔枝园智能灌溉决策系统模糊控制器设计与优化[J]. 农业机械学报, 2018, 49(8): 26-32.
    [9]
    赖呈纯, 黄贤贵, 王琦, 等. 果实生长与果园土壤含水量的变化对‘茂谷柑’裂果的影响[J]. 福建农林大学学报(自然科学版), 2019, 48(4): 434-439.
    [10]
    朱浩, 刘珂欣, 刘维维, 等. 极端耐盐碱菌株的筛选及其菌肥对盐碱条件下小麦生长和土壤环境的影响[J]. 应用生态学报, 2019, 30(7): 2338-2344.
    [11]
    杨伟志, 孙道宗, 刘建梅, 等. 基于物联网和人工智能的柑橘灌溉专家系统[J]. 节水灌溉, 2019(9): 116-120.
    [12]
    李中良, 胡晨晓, 邹腾飞, 等. 基于物联网的柑橘土壤水分养分实时监测系统的设计与实现[J]. 农业网络信息, 2014(2): 21-24.
    [13]
    罗党, 王浍婷. 灰色神经网络下的多变量土壤含水量预测模型[J]. 华北水利水电大学学报(自然科学版), 2017, 38(5): 70-75.
    [14]
    蔡亮红, 丁建丽. 基于变量优选和ELM算法的土壤含水量预测研究[J]. 光谱学与光谱分析, 2018, 38(7): 2209-2214.
    [15]
    张武, 洪汛, 李蒙, 等. 监测采样间隔对土壤墒情预测模型性能的影响[J]. 甘肃农业大学学报, 2020, 55(1): 221-228.
    [16]
    何灿隆, 沈明霞, 刘龙申, 等. 基于NB-IoT的温室温度智能调控系统设计与实现[J]. 华南农业大学学报, 2018, 39(2): 117-124.
    [17]
    岳学军, 王叶夫, 刘永鑫, 等. 基于GPRS与ZigBee的果园环境监测系统[J]. 华南农业大学学报, 2014, 35(4): 109-113.
    [18]
    徐兴, 岳学军, 林涛. 基于ZigBee网络的水环境无线监测系统设计[J]. 华南农业大学学报, 2013, 34(4): 593-597.
    [19]
    余国雄, 王卫星, 谢家兴, 等. 基于物联网的荔枝园信息获取与智能灌溉专家决策系统[J]. 农业工程学报, 2016, 32(20): 144-152.
    [20]
    姜晟, 王卫星, 孙道宗, 等. 能量自给的果园信息采集无线传感器网络节点设计[J]. 农业工程学报, 2012, 28(9): 153-158.
    [21]
    王卫星, 陈华强, 姜晟, 等. 基于低功耗的发射功率自适应水稻田WSN监测系统[J]. 农业机械学报, 2018, 49(3): 150-157.
    [22]
    ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements: FAO irrigation and drainage paper 56[EB/OL]. [2020-06-30]. https://www.researchgate.net/publication/235704197.
    [23]
    RALLO G, GONZÁLEZ-ALTOZANO P, MANZANO-JUÁREZ J, et al. Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation[J]. Agr Water Manag, 2017, 180: 136-147. doi: 10.1016/j.agwat.2016.11.011
    [24]
    FENG Y, PENG Y, CUI N, et al. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data[J]. Comput Electron Agr, 2017, 136: 71-78. doi: 10.1016/j.compag.2017.01.027
    [25]
    SPECHT D F. A general regression neural network[J]. IEEE Trans Neural Netw, 1991, 2(6): 568-576. doi: 10.1109/72.97934
    [26]
    MAJHI B, NAIDU D, MISHRA A P, et al. Improved prediction of daily pan evaporation using Deep-LSTM model[J]. Neural Comput Appl, 2019, 4(6): 110-122.
    [27]
    ZHANG J, ZHU Y, ZHANG X, et al. Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas[J]. J Hydrol, 2018, 561: 918-929. doi: 10.1016/j.jhydrol.2018.04.065
    [28]
    CHENG H, XIE Z, WU L, et al. Data prediction model in wireless sensor networks based on bidirectional LSTM[J]. Eurasip J Wirel Comm, 2019, 2019(1): 203-212. doi: 10.1186/s13638-019-1511-4
    [29]
    MAJHI B, NAIDU D, MISHRA A P, et al. Improved prediction of daily pan evaporation using Deep-LSTM model[J]. Neural Comput Appl, 2020, 32(12): 7823-7838.
    [30]
    REDDY D S, PRASAD P R C. Prediction of vegetation dynamics using NDVI time series data and LSTM[J]. Model Earth Syst, 2018, 4(1): 409-419. doi: 10.1007/s40808-018-0431-3
    [31]
    NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part I: A discussion of principles[J]. J Hydrol, 1970, 10(3): 282-290. doi: 10.1016/0022-1694(70)90255-6
  • Cited by

    Periodical cited type(9)

    1. 吴超,周紫静,黄锦铧,许啸寅,邱洪,彭业萍. 基于长短时记忆的农作物生长环境数据预测. 深圳大学学报(理工版). 2024(05): 563-573 .
    2. 谢妍,贾志军,王二英,贾永国,张旭东. 基于IPSO-BiLSTM和SVM的灌区农田土壤含水率预测研究. 节水灌溉. 2024(12): 63-71 .
    3. 刘嘉豪,刘浩. 基于LSTM神经网络模型的石油单井产量预测. 石油化工应用. 2023(03): 38-41+52 .
    4. 王登亮,马创举,曹锦萍,吴雪珍,吴群,刘丽丽,陈骏,孙建城. 柑桔生产数字技术研究及应用进展. 中国南方果树. 2023(03): 228-235 .
    5. 刘丽贞,黄琪,迟殿委,方朝阳,楚明航. 基于随机森林回归模型和高频数据的鄱阳湖子湖电导率预测. 水电能源科学. 2023(10): 50-53 .
    6. 代秋芳,熊诗路,李震,宋淑然,陈梓蔚,王元. 基于LSTM的柑橘幼苗蒸发量预测. 湖南农业大学学报(自然科学版). 2023(06): 743-747 .
    7. 彭旭,饶元,乔焰. 基于宽度卷积神经网络的异常农情数据检测方法. 华南农业大学学报. 2022(02): 113-121 . 本站查看
    8. 高鹏,杨明欣,周平,孙道宗,谢家兴,陆健强,王卫星. 基于物联网和Deep-LSTM的茶树净光合速率动态预测模型. 农业工程学报. 2022(04): 159-168 .
    9. 王武,杨海建,洪林,杨蕾,王敏,李霜. 柑橘需水规律研究进展及趋势展望. 南方农业. 2022(19): 141-147+152 .

    Other cited types(4)

Catalog

    Article views (1239) PDF downloads (1109) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return