Citation: | YANG Yanshan, DING Qishuo, ZHAO Yaping, et al. Optimization of the rotary tillage tool for wheat strip-till planter[J]. Journal of South China Agricultural University, 2021, 42(2): 110-115. DOI: 10.7671/j.issn.1001-411X.202007020 |
To optimize the design of the rotary tiller tool for wheat strip-till planter, and improve the operation quality.
Three typical rotary tillage tools (C-type blade, straight blade and deep tillage blade) and one optimized rotary tillage tool (combination of straight blade and deep tillage blade) were applied. The field in-situ cultivation was performed under the condition of centralized surface straw treatment with the rotation speed of the blade shaft at 180, 280, 380 and 510 r/min.
The C-type blade could create continuous and intact seedbed, but most soil fragments were thrown out seedbed during the cultivation process, and the backfill effect was the worst. The deep tillage blade had good performance in soil tillage and breaking, it created continuous and intact seedbed but the boundary was irregular, and it could not effectively control the soil disturbance range in the process of tillage. The straight blade had advantage in its control of seedbed boundary, but it could not make continuous seedbed when the rotation speed of blade shaft was 180 and 510 r/min, and the soil fragments formed by tillage was too large (mean weight diameter > 40 mm) when the rotation speed of the blade shaft was 280 or 380 r/min. The combination blades benefited from the organic combination of straight blade and deep tillage blade, therefore it had outstanding advantages in shape formation of seedbed, soil fragmentation degree and backfill effect and energy consumption.
Under the condition of centralized treatment of surface straw, the combination blades are recommended as the tillage tool of wheat strip-till planter for clay soil.
[1] |
杨建仓. 我国小麦生产发展及其科技支撑研究[D]. 北京: 中国农业科学院, 2008.
|
[2] |
徐云峰. 小型免耕播种机的设计与试验研究[D]. 北京: 中国农业大学, 2005.
|
[3] |
HOSSAIN M I, ESDAILE R J, BELL R, et al. Actual challenges: Developing low cost no-till seeding technologies for heavy residues; Small scaleno-till seeders for two wheel tractors[C]//The 4th World Congress on Conservation Agriculture, New Delhi, India, 2009: 171-177.
|
[4] |
JOHANSEN C, HAQUE M E, BELL R W, et al. Conservation agriculture for small holder rainfed farming: Opportunities and constraints of new mechanized seeding systems[J]. Field Crops Research, 2012, 132(14): 18-32.
|
[5] |
胡红, 李洪文, 李传友, 等. 稻茬田小麦宽幅精量少耕播种机的设计与试验[J]. 农业工程学报, 2016, 32(4): 24-32. doi: 10.11975/j.issn.1002-6819.2016.04.004
|
[6] |
BERNTSEN R, BERRE B. Soil fragmentation and the efficiency of tillage implements[J]. Soil Copy & Tillage Research, 2002, 64(1): 137-147.
|
[7] |
ABBASPOUR-GILANDEH Y, SHARABIANI V R, KHALILIAN A. Effects of tillage methods on soil fragmentation in loamy-clay soils[J]. American Journal of Agricultural & Biological Science, 2009, 4(2): 131-136.
|
[8] |
MATIN M A, FIELKE J M, DESBIOLLES J M A. Furrow parameters in rotary strip-tillage: Effect of blade geometry and rotary speed[J]. Biosystems Engineering, 2014, 118(1): 7-15.
|
[9] |
HASHEM I A T, YAQOOB I, ANUAR N B, et al. The rise of “big data” on cloud computing: Review and open research issues[J]. Information Systems, 2015, 47: 98-115.
|
[10] |
BAKER C J, SAXTON K E, RITCHIE W R, et al. No-tillage seeding in conservation agriculture[M]. 2nd edition. Oxford University Press: CABI, Wallingford, 2007: 326.
|
[11] |
王庆杰, 何进, 李洪文, 等. 免耕播种机开沟防堵单元体设计与试验[J]. 农业工程学报, 2012, 28(1): 27-31. doi: 10.3969/j.issn.1002-6819.2012.01.006
|
[12] |
LEE K S, PARK S H, PARK W Y, et al. Strip tillage characteristics of rotary tiller blades for use in a dryland direct rice seeder[J]. Soil & Tillage Research, 2003, 71(1): 25-32. doi: 10.1016/S0167-1987(02)00159-9
|
[13] |
MATIN M A, FIELKE J M, DESBIOLLES J M A. Torque and energy characteristics for strip-tillage cultivation when cutting furrows using three designs of rotary blade[J]. Biosystems Engineering, 2015, 129: 329-340. doi: 10.1016/j.biosystemseng.2014.11.008
|
[14] |
MATIN M A, DESBIOLLES J M A, FIELKE J M. Strip-tillage using rotating straight blades: Effect of cutting edge geometry on furrow parameters[J]. Soil & Tillage Research, 2016, 155: 271-279. doi: 10.1016/j.still.2015.08.016
|
[15] |
李汝莘. 土壤容重和含水量对耕作阻力的影响[J]. 农业工程学报, 1998, 14(1): 81-85. doi: 10.3321/j.issn:1002-6819.1998.01.016
|
[16] |
李霞, 张东兴, 张瑞, 等. 土壤物理特性对深松阻力影响的试验[J]. 江苏大学学报(自然科学版), 2014, 35(1): 34-39.
|
[17] |
李艳洁, 徐泳, 赵东. 微型土壤动力学试验土槽装置的研制[J]. 机械工程学报, 2010, 46(15): 65-70.
|
[18] |
杨艳山, 丁启朔, 丁为民, 等. 田间原位综合耕作试验台设计与应用[J]. 农业机械学报, 2016, 47(1): 68-74. doi: 10.6041/j.issn.1000-1298.2016.01.010
|
[19] |
鲁向晖, 隋艳艳, 王飞, 等. 保护性耕作技术对农田环境的影响研究[J]. 干旱地区农业研究, 2007, 25(3): 66-72. doi: 10.3321/j.issn:1000-7601.2007.03.014
|
[20] |
王刚, 李问盈. 带状浅旋小麦播种机的研究[J]. 农机化研究, 2007(2): 153-155. doi: 10.3969/j.issn.1003-188X.2007.02.046
|
[21] |
CHERTKIATTIPOL S, NIYAMAPA T. Variations of torque and specific tilling energy for different rotary blades[J]. International Agricultural Engineering Journal, 2011, 19(3): 1-14.
|
[22] |
KATAOKA T, SHIBUSAWA S. Soil-blade dynamics in reverse-rotational rotary tillage[J]. Journal of Terramechanics, 2002, 39(2): 95-113. doi: 10.1016/S0022-4898(02)00004-6
|
[23] |
KHEIRALLA A F, YAHYA A, ZOHADIE M, et al. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia[J]. Soil & Tillage Research, 2004, 78(1): 21-34. doi: 10.1016/j.still.2003.12.011
|