GAO Dalin, YE Wenling, MA Youhua, et al. Impact of silicon application on zinc and copper absorption of rice seedlings[J]. Journal of South China Agricultural University, 2021, 42(3): 26-32. DOI: 10.7671/j.issn.1001-411X.202007001
    Citation: GAO Dalin, YE Wenling, MA Youhua, et al. Impact of silicon application on zinc and copper absorption of rice seedlings[J]. Journal of South China Agricultural University, 2021, 42(3): 26-32. DOI: 10.7671/j.issn.1001-411X.202007001

    Impact of silicon application on zinc and copper absorption of rice seedlings

    More Information
    • Received Date: July 01, 2020
    • Available Online: May 17, 2023
    • Objective 

      To study the growth of rice seedlings as well as absorption and transport of zinc (Zn) and copper (Cu) under different silicon (Si) application levels.

      Method 

      ‘Wandao 71’ was used as material through water cultivation to study the biomass, zinc and copper contents and accumulation of rice seedlings under different silicon fertilizer levels of 0 (CK), 30, 60, 90, 120, 150 mg·L−1, respectively.

      Result 

      The leaf number, plant height and root length of rice seedlings were all higher than those of the control, and the biomass (fresh weight) of rice shoots and roots increased over the control by 5.44%−52.81% and 4.83%−42.49% respectively. The leaf number, plant height, root length and above-ground biomass were the highest in 90 mg·L−1 SiO2 treatment. Zn and Cu net absorptions of rice root increased over the control by 5.79%−77.43% and 6.51%−44.96%, respectively. The Zn transport coefficients of 60 and 90 mg·L−1 SiO2 treatments increased over the control by 10.91% and 38.18% respectively, meanwhile those of Cu increased by 8.70% and 26.09% respectively. The contents of Zn and Cu in rice shoot increased with the increase of SiO2 concentration, reached the peak value at 90 mg·L−1 SiO2 concentration, and then began to decline with the increase of SiO2 concentration.

      Conclusion 

      Considering the factors of rice growth index, biomass, and absorption of Zn and Cu, 90 mg·L−1 SiO2 treatment is the best Si fertilizer level for microelements of Zn and Cu absorption in the present study.

    • [1]
      叶廷红, 张赓, 李小坤. 水稻锌营养及锌肥高效施用研究进展[J]. 中国土壤与肥料, 2019, 56(6): 1-6. doi: 10.11838/sfsc.1673-6257.19009
      [2]
      ISHIMARU Y, BASHIR K, NISHIZAWA N K. Zn uptake and translocation in rice plants[J]. Rice, 2011, 4(1): 21-27. doi: 10.1007/s12284-011-9061-3
      [3]
      SUN L, LIU Q, XUE Y, et al. Dynamic influence of S fertilizer on Cu bioavailability in rice (Oryza sativa L.) rhizosphere soil during the whole life cycle of rice plants[J]. Journal of Soils and Sediments, 2019, 19(1): 198-210. doi: 10.1007/s11368-018-2009-0
      [4]
      王子腾, 耿元波. 国内外主要粮食作物对施用锌肥响应的研究进展[J]. 植物营养与肥料学报, 2018, 24(3): 805-816. doi: 10.11674/zwyf.17401
      [5]
      叶林顺, 刘慧璇, 谢咏梅, 等. 改性稻草吸附铜离子的动力学机理[J]. 环境科学与技术, 2006, 29(8): 28-31. doi: 10.3969/j.issn.1003-6504.2006.08.013
      [6]
      杨鹤, 张浩, 郜玉钢, 等. 叶面喷施锌对农田人参锌营养、生长发育及皂苷含量的影响[J]. 华南农业大学学报, 2012, 33(3): 311-315. doi: 10.3969/j.issn.1001-411X.2012.03.008
      [7]
      何普, 刘鸿雁, 吴龙华, 等. 高、低Cd积累水稻和小麦籽粒中Cu、Zn的富集特性[J]. 生态与农村环境学报, 2019, 35(3): 385-391.
      [8]
      SETH A D, SARKAR A, DATTA B, et al. Suitability of complex extractants for assessment of available soil zinc for nutrition of rice (Oryza sativa L.) in subtropical India[J]. Soil Science, 2017, 182(1): 28-35. doi: 10.1097/SS.0000000000000190
      [9]
      饶震红, 杜凤沛, 李向东. 硅对农作物生长的影响[J]. 化学教育(中英文), 2019, 40(13): 1-9.
      [10]
      KLOTZBUCHER A, KLOTZBUCHER T, JAHN R, et al. Effects of Si fertilization on Si in soil solution, Si uptake by rice, and resistance of rice to biotic stresses in Southern Vietnam[J]. Paddy and Water Environment, 2018, 16(2): 243-252. doi: 10.1007/s10333-017-0610-2
      [11]
      王力, 孙影, 张洪程, 等. 不同时期施用锌硅肥对优良食味粳稻产量和品质的影响[J]. 作物学报, 2017, 43(6): 885-898.
      [12]
      LIANG Y C, WONG J C, WEI L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil[J]. Chemosphere, 2005, 58(4): 475-484. doi: 10.1016/j.chemosphere.2004.09.034
      [13]
      SHI X H, ZHANG C C, WANG H, et al. Effect of Si on the distribution of Cd in rice seedlings[J]. Plant and Soil, 2005, 272(1): 53-60.
      [14]
      ZHANG C C, WANG L J, NIE Q, et al. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.)[J]. Environmental and Experimental Botany, 2008, 62(3): 300-307. doi: 10.1016/j.envexpbot.2007.10.024
      [15]
      贾倩, 胡敏, 张洋洋, 等. 硅钙肥对水稻吸收铅、镉的影响研究[J]. 环境科学与技术, 2017, 40(6): 24-30.
      [16]
      GU H H, ZHAN S S, WANG S Z, et al. Silicon-mediated amelioration ofzinc toxicity in rice (Oryza sativa L.) seedlings[J]. Plant and Soil, 2012, 350(1): 193-204.
      [17]
      杨良金, 唐宗伟, 黄胜海, 等. 水稻施用硅肥的增产效果[J]. 土壤, 2001, 44(3): 166-167. doi: 10.3321/j.issn:0253-9829.2001.03.013
      [18]
      刘红芳, 宋阿琳, 范分良, 等. 高供氮水平下不同硅肥对水稻茎秆特征的影响[J]. 植物营养与肥料学报, 2018, 24(3): 758-768. doi: 10.11674/zwyf.17485
      [19]
      梁永超, 张永春, 马同生. 植物的硅素营养[J]. 土壤学进展, 1993, 21(3): 7-14.
      [20]
      RIOTTE J, SANDHYA K, PRAKASH N B, et al. Origin of silica in rice plants and contribution of diatom earth fertilization: Insights from isotopic Si mass balance in a paddy field[J]. Plant and Soil, 2018, 423(1): 481-501.
      [21]
      SUKYANKIJ S, THANACHIT S, ANUSONTPORNPERM S, et al. Assessment of soil Zn availability for Khao Dok Mali 105 rice: A case study in Thailand[J]. Journal of Crop Science and Biotechnology, 2020, 23(2): 181-190. doi: 10.1007/s12892-019-0333-0
      [22]
      魏宾纭, 周航, 刘佳炜, 等. 不同水分管理模式联合叶面喷施硅肥对水稻Cd累积的影响[J]. 环境科学, 2020, 41(8): 3855-3861. doi: 10.13227/j.hjkx.202002147
      [23]
      曹庭悦, 刘鸣达, 沃惜慧, 等. 硅、磷配施对水稻镉吸收转运的影响及其机制[J]. 农业环境科学学报, 2020, 39(10): 37-44.
      [24]
      李清芳, 周秀杰, 马成仓. 硅对小麦幼苗几项生理生化性质的影响[J]. 淮北煤师院学报(自然科学版), 2001, 23(4): 37-40.
      [25]
      董瑜皎, 袁江, 吕世华. 2个氮水平下不同施锌方式对覆膜水稻产量及锌吸收的影响[J]. 西南农业学报, 2018, 31(8): 1655-1661.
      [26]
      CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: A review[J]. European Journal of Soil Science, 2017, 69(1): 172-180.
      [27]
      CAKMAK I, KALACI M, EKIZ H, et al. Zinc deficiency as an actual problem in plant and human nutri-tion in Turkey: A NATO-science for stability project[J]. Field Crops Research, 1999, 60(1): 175-188.
      [28]
      覃莉苿, 周建宽. 水稻增施中微量元素硅肥与锌肥效果研究[J]. 现代农业科技, 2019, 18(1): 10-13.
      [29]
      黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010.
      [30]
      ANWAAR S A, ALI S, ALI S, et al. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage[J]. Environmental Science and Pollution Research, 2015, 22(5): 3441-3450. doi: 10.1007/s11356-014-3938-9
      [31]
      WANG R, FU W, WANG J, et al. Application of rice grain husk derived biochar in ameliorating toxicity impacts of Cu and Zn on growth, physiology and enzymatic functioning of wheat seedlings[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(4): 636-641. doi: 10.1007/s00128-019-02705-y
      [32]
      卢志红, 谭雪明, 朱美英, 等. 硫硅配施对土壤铜形态和水稻吸收铜的影响[J]. 农业环境科学学报, 2013, 32(9): 1806-1813. doi: 10.11654/jaes.2013.09.015
      [33]
      BOSNIC D, NIKOLIC D, TIMOTIJEVIC G, et al. Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity[J]. Plant and Soil, 2019, 441(1/2): 629-641.
      [34]
      汪亚会, 覃雨虹, 马彦蓉, 等. 生物炭配施微肥对菜园土壤有效态重金属含量的影响[J]. 华南农业大学学报, 2018, 39(5): 18-24. doi: 10.7671/j.issn.1001-411X.2018.05.003
      [35]
      MEHRABANJOUBANI P, ABDOLZADEH A, SADEGHIPOUR H R, et al. Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes[J]. Theoretical and Experimental Plant Physiology, 2015, 27(1): 19-29. doi: 10.1007/s40626-014-0028-9
      [36]
      俄胜哲. 攀西地区稻米中微量元素含量变异及影响因素初探[D]. 成都: 四川农业大学, 2005.
    • Cited by

      Periodical cited type(1)

      1. 戚旺,王俊杰,轩强兵,毕一凡,朱明兰,张艳娇,姚莎莎,王晶晶,张禹舜,梁卫红. 水稻Rho GDP解离抑制因子OsRhoGDI1基因的特征分析. 生物工程学报. 2024(10): 3515-3529 .

      Other cited types(0)

    Catalog

      Article views (922) PDF downloads (840) Cited by(1)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return