• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHU Sheng, DENG Jizhong, ZHANG Yali, et al. Study on distribution map of weeds in rice field based on UAV remote sensing[J]. Journal of South China Agricultural University, 2020, 41(6): 67-74. DOI: 10.7671/j.issn.1001-411X.202006058
Citation: ZHU Sheng, DENG Jizhong, ZHANG Yali, et al. Study on distribution map of weeds in rice field based on UAV remote sensing[J]. Journal of South China Agricultural University, 2020, 41(6): 67-74. DOI: 10.7671/j.issn.1001-411X.202006058

Study on distribution map of weeds in rice field based on UAV remote sensing

More Information
  • Received Date: June 29, 2020
  • Available Online: May 17, 2023
  • Objective 

    To obtain and analyze the low altitude remote sensing image of rice field, acquire the weed distribution map, and provide a reference for the precious pesticide application of weeds in the field.

    Method 

    Three machine learning algorithms including support vector machine (SVM), K-nearest neighbor (KNN) and AdaBoost were used to classify and compare the weed visible light images in rice field captured by UAV after color feature extraction and principal component analysis (PCA) dimensionality reduction. A convolutional neural network (CNN) which can automatically obtain the image features without feature extraction and dimensionality reduction was introduced to classify the weed images and improve the classification accuracy.

    Result 

    The run time of test set based on SVM, KNN and AdaBoost were 0.500 4, 2.209 2 and 0.411 1 s, and the classification accuracies were 89.75%, 85.58% and 90.25% respectively; The classification accuracy of image based on CNN was 92.41%, which was higher than those of three machine learning algorithms. All machine learning algorithms and CNN could effectively recognize rice and weed, acquire weed distribution information, and generate distribution map of weed in rice field.

    Conclusion 

    The classification accuracy of weed in rice field based on CNN is the highest, and the weed distribution map generated by CNN is the best.

  • [1]
    姚中统. 新型助剂对玉米田除草剂增效作用及增效机制的研究[D]. 哈尔滨: 东北农业大学, 2019.
    [2]
    LOPEZ-GRANADOS F, TORRES-SANCHEZ J, SERRANO-PEREZ A, et al. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds[J]. Precis Agric, 2016, 17(2): 183-199. doi: 10.1007/s11119-015-9415-8
    [3]
    LAN Y, THOMSON S J, HUANG Y, et al. Current status and future directions of precision aerial application for site-specific crop management in the USA[J]. Comput Electron Agr, 2010, 74(1): 34-38. doi: 10.1016/j.compag.2010.07.001
    [4]
    LAN Y, CHEN S. Current status and trends of plant protection UAV and its spraying technology in China[J]. Int J Precis Agric Aviat, 2018, 1(1): 1-9. doi: 10.33440/j.ijpaa.20180101.0002
    [5]
    刘斌. 基于无人机遥感影像的农作物分类研究[D]. 北京: 中国农业科学院, 2019.
    [6]
    邓继忠, 任高生, 兰玉彬, 等. 基于可见光波段的无人机超低空遥感图像处理[J]. 华南农业大学学报, 2016, 37(6): 16-22.
    [7]
    PATHAK R, BARZIN R, BORA G C. Data-driven precision agricultural applications using field sensors and unmanned aerial vehicle (UAVs)[J]. Int J Precis Agric Aviat, 2018, 1(1): 19-23.
    [8]
    BARRERO O, ROJAS D, GONZALEZ C, et al. Weed detection in rice fields using aerial images and neural networks[C]//ALTUVE M. Symposium of image, signal processing, and artificial vision. New York: IEEE, 2016.
    [9]
    BARRERO O, PERDOMO S A. RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields[J]. Precis Agric, 2018, 19(5): 809-822. doi: 10.1007/s11119-017-9558-x
    [10]
    UTO K, SEKI H, SAITO G, et al. Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system[J]. IEEE J-STARS, 2013, 6(2): 851-860.
    [11]
    马明洋. 基于无人机低空遥感的东北粳稻叶绿素含量估测方法研究[D]. 沈阳: 沈阳农业大学, 2018.
    [12]
    洪雪. 基于水稻高光谱遥感数据的植被指数产量模型研究[D]. 沈阳: 沈阳农业大学, 2017.
    [13]
    MA X, DENG X, QI L, et al. Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields[J]. PLoS One, 2019, 14(4): e0215676. doi: 10.1371/journal.pone.0215676
    [14]
    邓向武, 齐龙, 马旭, 等. 基于多特征融合和深度置信网络的稻田苗期杂草识别[J]. 农业工程学报, 2018, 34(14): 165-172.
    [15]
    陈晓红. 数据降维的广义相关分析研究[D]. 南京: 南京航空航天大学, 2011.
    [16]
    KARL PEARSON F R S. LIII: On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine Series 1, 1901, 11(2): 559-572.
    [17]
    HOTELLING H. Analysis of a complex of statistical variables into principal components[J]. J Educ Psychol, 1933, 24(6): 417-441. doi: 10.1037/h0071325
    [18]
    王小龙, 邓继忠, 黄华盛, 等. 基于高光谱数据的棉田虫害鉴别研究[J]. 华南农业大学学报, 2019, 40(3): 97-103.
    [19]
    曾伟辉. 面向农作物叶片病害鲁棒性识别的深度卷积神经网络研究[D]. 合肥: 中国科学技术大学, 2018.
    [20]
    SUN J, YANG J, ZHANG C, et al. Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method[J]. Math Comput Model, 2013, 58(3/4): 573-581.
    [21]
    MILLER D M, KAMINSKY E J, RANA S. Neural network classification of remote-sensing data[J]. Comput Geosci, 1995, 21(3): 377-386. doi: 10.1016/0098-3004(94)00082-6
    [22]
    ZENG J, GUO H F, HU Y M. Artificial neural network model for identifying taxi gross emitter from remote sensing data of vehicle emission[J]. J Environ Sci, 2007, 19(4): 427-431. doi: 10.1016/S1001-0742(07)60071-0
    [23]
    BROWN M, LEWIS H G, GUNN S. Linear spectral mixture models and support vector machines for remote sensing[J]. IEEE T Geosci Remote, 2000, 38(5): 2346-2360. doi: 10.1109/36.868891
    [24]
    HUANG C, DAVIS L S, TOWNSHEND J R G. An assessment of support vector machines for land cover classification[J]. Int J Remote Sens, 2002, 23(4): 725-749. doi: 10.1080/01431160110040323
    [25]
    IRVIN B J, VENTURA S J, SLATER B K. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin[J]. Geoderma, 1997, 77(2/3/4): 137-154.
    [26]
    PAL S K, GHOSH A, SHANKAR B U. Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation[J]. Int J Remote Sens, 2000, 21(11): 2269-2300. doi: 10.1080/01431160050029567
    [27]
    王璨, 李志伟. 利用融合高度与单目图像特征的支持向量机模型识别杂草[J]. 农业工程学报, 2016, 32(15): 165-174.
    [28]
    唐美丽, 张劲松, 李璐, 等. 基于GPU的SVM参数优化并行算法[J]. 江苏大学学报(自然科学版), 2017, 38(5): 576-581.
    [29]
    CORTES C, VAPNIK V N. Support-vector networks[J]. 1995. doi: 10.1023/A: 1022627411411.
    [30]
    李春雨, 葛啸, 金燕婷, 等. 基于近红外光谱技术的蔬菜农药残留种类检测[J]. 农业工程, 2019, 9(6): 33-39.
    [31]
    黄欣, 莫海淼, 赵志刚. 基于自适应烟花算法和k近邻算法的特征选择算法[J]. 计算机应用与软件, 2020, 37(5): 268-274.
    [32]
    FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. J Comput Syst Sci, 1997, 55(1): 119-139. doi: 10.1006/jcss.1997.1504
    [33]
    杨国欣. 基于Adaboost算法和视觉显著性的羊只目标检测与计数方法研究[D]. 杨凌: 西北农林科技大学, 2019.
    [34]
    付忠良. 关于AdaBoost有效性的分析[J]. 计算机研究与发展, 2008, 45(10): 1747-1755.
    [35]
    LIANG X, XU C, SHEN X, et al. Human parsing with contextualized convolutional neural network[J]. IEEE T Pattern Anal, 2017, 39(1): 115-127. doi: 10.1109/TPAMI.2016.2537339
    [36]
    卢伟, 胡海阳, 王家鹏, 等. 基于卷积神经网络面部图像识别的拖拉机驾驶员疲劳检测[J]. 农业工程学报, 2018, 34(7): 192-199.
  • Cited by

    Periodical cited type(9)

    1. 李秀玉,唐继敏,殷晓洁,刘一飞,李子康. 应用优化最大熵模型的珍稀濒危玉兰属物种适生区预测. 东北林业大学学报. 2025(01): 64-72 .
    2. 李益敏,向倩英,邓选伦,冯显杰. 基于优化MaxEnt模型的怒江州滑坡易发性评价. 河南理工大学学报(自然科学版). 2025(01): 57-67 .
    3. 姜垒,胡喻华,吴玉芬,梁键明,蒋庆莲,张铭,谭淦,何春梅,韦霄,施诗,唐光大. 基于MaxEnt模型的广东省红豆属植物潜在适生区研究. 广西科学. 2024(01): 149-166 .
    4. 张春玲,杨毅哲,陈丽丽,陈瑜,王佳,李欣迪,张献瑞,史岩,谢军,武艺凡,刘刚. 外来植物节节麦入侵过程中的生态位进化与入侵潜力研究. 中国农学通报. 2024(29): 120-130 .
    5. 唐继敏,殷晓洁,李干,高伟杰,黎宏琴. 气候变化下中国珍稀濒危拟单性木兰属适生区模拟及GAP分析. 西南农业学报. 2024(09): 2120-2129 .
    6. 刘磊,赵立娟,刘佳奇,张辉盛,张志伟,黄瑞芬,高瑞贺. 基于优化的MaxEnt模型预测气候变化下松褐天牛在我国的潜在适生区. 林业科学. 2024(11): 139-148 .
    7. 徐扬,张琦,郭线茹,赵曼,李为争,席玉强,王高平,胡明鑫,张利娟. 当前和未来气候下龟纹瓢虫在中国的适生区预测. 环境昆虫学报. 2024(06): 1391-1400 .
    8. 谢梦琪,寸得娇,姚晓燕,王飞,李兰花,田娜. 气候变化对我国黑胸大蠊分布的影响研究. 中国媒介生物学及控制杂志. 2023(04): 542-547 .
    9. 张雅茜,王淋,包福海,张淑宁,红梅,刘一超,陈俊兴,蔺悦,敖敦,白玉娥,包文泉. 应用最大熵模型预测的欧李潜在适生区分布及气候变化对其的影响. 东北林业大学学报. 2023(11): 54-62 .

    Other cited types(2)

Catalog

    Article views (1233) PDF downloads (1949) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return