Citation: | ZHOU Jie, LI Ming, XU Youyang, et al. Analysis of bacterial community diversity in rhizosphere soil of continuous cropping Andrographis paniculata based on high-throughput sequencing[J]. Journal of South China Agricultural University, 2021, 42(3): 55-63. DOI: 10.7671/j.issn.1001-411X.202006056 |
To investigate the effects of continuous cropping of Andrographis paniculata on soil bacterial diversity and community structure.
Sequencing analysis of samples from continuous cropping group (rhizosphere soil of A. paniculata continuous cropping for five years) and control group (uncultivated natural soil with the same texture as the soil around A. paniculata continuous cropping for five years) were performed using 16S rRNA gene high-throughput sequencing technology. The differences in richness, diversity and community structure of soil bacteria from two groups were analyzed.
The analysis results of α diversity index showed that the bacterial richness indices (Chao1 index and Observed species index) in the soil of continuous cropping group were significantly lower than those of the control group (P<0.05), and the diversity indices (Shannon index and Simpson index) in the soil of continuous cropping group were lower than those of the control group, but the differences were not significant. Principal coordinates analysis and molecular variance analysis of community structure between groups showed that continuous cropping ofA. paniculata significantly changed soil bacterial community structure (P<0.05). A total of 2769 operational taxonomic units were detected from the soil samples of two groups, belonging to 47 phyla and 885 genera. Continuous cropping ofA. paniculata obviously changed the structure distribution of soil bacteria at the phylum and genus level. At the phylum classification level, 11 bacterial phyla including Acidobacteria, Proteobacteria, Bacteroidetes, Patescibacteria and etc. were the main bacterial communities in two groups. Compared with the control group, the relative abundance of Proteobacteria and Acidobacteria in the continuous cropping group increased by 21.97% and 46.33% respectively (P<0.05), while the relative abundance of Patescibacteria reduced by 68.99% (P<0.05). At the genus classification level, the relative abundance of 10 dominant bacterial genera changed significantly (P<0.05). Among them, compared with the control group, the relative abundance of the beneficial bacteriaFlavobacterium and Haliangiumin in the soil of continuous cropping group reduced by 78.40% and 54.55% respectively, while the relative abundance of the plant pathogenic bacterium Burkholderia-Caballeronia-Paraburkholderia in the soil of continuous cropping group increased by 804.17%.
After five years of A. paniculata continuous cultivation, the level of soil bacterial richness and diversity decreased. At the same time, the relative abundance of beneficial bacteria significantly reduced, while the relative abundance of pathogenic bacteria significantly increased, causing a change in the bacterial community structure. The above-mentioned changes broke the original soil microecological balance, which may be one of the important reasons for A. paniculata continuous cropping obstacles.
[1] |
国家药典委员会. 中华人民共和国药典: 1部: 2015年版[M]. 北京: 中国医药科技出版社, 2015: 268.
|
[2] |
LI J R, CHEN X Z, ZHAN R T, et al. Transcriptome profiling reveals metabolic alteration in Andrographis paniculatain response to continuous cropping[J]. Industrial Crops and Products, 2019, 137: 585-596. doi: 10.1016/j.indcrop.2019.05.067
|
[3] |
王瑞, 董林林, 徐江, 等. 基于病虫害综合防治的人参连作障碍消减策略[J]. 中国中药杂志, 2016, 41(21): 3890-3896.
|
[4] |
蒋景龙, 余妙, 李丽, 等. 西洋参根腐病发生与根际土壤细菌群落结构变化关系研究[J]. 中草药, 2018, 49(18): 4399-4407. doi: 10.7501/j.issn.0253-2670.2018.18.027
|
[5] |
QIAO Y J, ZHANG J J, SHANG J H, et al. GC-MS-based identification and statistical analysis of liposoluble components in the rhizosphere soils of Panax notoginseng[J]. RSC Advances, 2019, 9(36): 20557-20564. doi: 10.1039/C9RA02110H
|
[6] |
张亚琴, 陈雨, 雷飞益, 等. 药用植物化感自毒作用研究进展[J]. 中草药, 2018, 49(8): 1946-1956. doi: 10.7501/j.issn.0253-2670.2018.08.032
|
[7] |
檀国印, 杨志玲, 袁志林, 等. 药用植物连作障碍及其防治途径研究进展[J]. 西北农林科技大学学报(自然科学版), 2012, 40(4): 197-204.
|
[8] |
曾令杰, 刘意, 禇晨亮, 等. 穿心莲化感作用与GAP栽培规范的研究[J]. 现代中药研究与实践, 2011, 25(3): 5-7.
|
[9] |
李俊仁, 陈秀珍, 刘凯频, 等. 穿心莲连作土壤提取物对其种子的化感作用[J]. 广州中医药大学学报, 2016, 33(3): 389-395.
|
[10] |
李玲梅, 李明. 不同处理方法对穿心莲种子萌发影响的初步研究[J]. 广东药学院学报, 2011, 27(4): 371-374. doi: 10.3969/j.issn.1006-8783.2011.04.010
|
[11] |
黎韵琪, 李明, 唐堃, 等. 穿心莲营养体的化感自毒作用研究[J]. 北方园艺, 2014(21): 157-160.
|
[12] |
ZHENG Y B, LI M. Autotoxicity of phenolic acids in root exudates of Andrographis paniculata (Burm. f.) Nees[J]. Allelopathy Journal, 2018, 45(2): 153-162. doi: 10.26651/allelo.j./2018-45-2-1183
|
[13] |
李珍, 陈义三, 陈荣珠, 等. 生物炭对连作穿心莲根际土壤微生物的影响[J]. 上饶师范学院学报, 2019, 39(6): 50-55.
|
[14] |
BRUMFIELD K D, HUQ A, COLWELL R R, et al. Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data[J]. PLoS One, 2020, 15(2): e0228899. doi: 10.1371/journal.pone.0228899.eColletion2020.
|
[15] |
MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5): 634-663. doi: 10.1111/1574-6976.12028
|
[16] |
沈菊培, 张丽梅, 贺纪正. 几种农田土壤中古菌、泉古菌和细菌的数量分布特征[J]. 应用生态学报, 2011, 22(11): 2996-3002.
|
[17] |
胡江春, 薛德林, 王书锦, 等. 大豆连作障碍研究Ⅲ. 海洋放线菌MB-97促进连作大豆增产机理[J]. 应用生态学报, 2002, 13(9): 1095-1098. doi: 10.3321/j.issn:1001-9332.2002.09.010
|
[18] |
寇智瑞, 周鑫斌. 不同连作年限黄壤烟田土壤细菌群落的差异[J]. 植物营养与肥料学报, 2020, 26(3): 511-521.
|
[19] |
谭勇, 崔尹赡, 季秀玲, 等. 三七种植前后土壤细菌群落结构与多样性分析[J]. 昆明理工大学学报(自然科学版), 2016, 41(6): 92-99.
|
[20] |
张庚. 穿心莲(Androyraphis paniculata(Brum. f)Nees)连作的自毒作用研究[D]. 广州: 华南农业大学, 2010.
|
[21] |
母容, 潘开文, 王进闯, 等. 阿魏酸、对羟基苯甲酸及其混合液对土壤氮及相关微生物的影响[J]. 生态学报, 2011, 31(3): 793-800.
|
[22] |
WANG Y Z, XU X M, LIU T M, et al. Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmerianivea L. Gaud) fields in different areas in China[J]. Scientific Reports, 2020, 10(1): 3264. doi: 10.1038/s41598-020-58608-0
|
[23] |
张重义, 陈慧, 杨艳会, 等. 连作对地黄根际土壤细菌群落多样性的影响[J]. 应用生态学报, 2010, 21(11): 2843-2848.
|
[24] |
JOHNSTON-MONJE D, LUNDBERG D S, LAZAROVITS G, et al. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil[J]. Plant and Soil, 2016, 405(1/2): 337-355.
|
[25] |
何玮, 郭琳微, 樊鹏辉, 等. 黄花棘豆在腐解过程中的化感作用及其土壤细菌群落结构分析[J]. 草业学报, 2015, 24(7): 21-29. doi: 10.11686/cyxb2014504
|
[26] |
FREY B, RIME T, PHILLIPS M, et al. Microbial diversity in European alpine permafrost and active layers[J]. FEMS Microbiology Ecology, 2016, 92(3): fiw018. doi: 10.1093/femsec/fiw018.
|
[27] |
BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): Emergencein agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350. doi: 10.1007/s11274-011-0979-9
|
[28] |
陈三凤, 李季伦, 裘维蕃. 关于抑制植物病原真菌几丁质酶来源及效应的研究强作用黄杆菌的分离和鉴定[J]. 植物病理学报, 1992(4): 37-41.
|
[29] |
KUNDIM B A, ITOU Y, SAKAGAMI Y, et al. New haliangicin isomers, potent antifungal metabolites produced by a marine myxobacterium[J]. The Journal of Antibiotics, 2003, 56(7): 630-638. doi: 10.7164/antibiotics.56.630
|
[30] |
张琦梦. 伯克氏菌属植物病原菌DNA条形码检测技术研究[D]. 南京: 南京农业大学, 2016.
|
[31] |
ZHAO J, ZHANG D, YANG Y Q, et al. Dissecting the effect of continuous cropping of potato on soil bacterial communities as revealed by high-throughput sequencing[J]. PLoS One, 2020, 15(5): e0233356. doi: 10.1371/journal.pone.0233356.
|
[32] |
DU L, HUANG B, DU N, et al. Effects of garlic/cucumber relay intercropping on soil enzyme activities and the microbial environment in continuous cropping[J]. HortScience, 2017, 52(1): 78-84. doi: 10.21273/HORTSCI11442-16
|
[33] |
王悦, 杨贝贝, 王浩, 等. 不同种植模式下丹参根际土壤微生物群落结构变化[J]. 生态学报, 2019, 39(13): 4832-4843.
|
[34] |
王彩云, 武春成, 曹霞, 等. 生物炭对温室黄瓜不同连作年限土壤养分和微生物群落多样性的影响[J]. 应用生态学报, 2019, 30(4): 1359-1366.
|
1. |
戴林华,黎远松,石睿. 基于改进YOLOv8n算法的水稻叶片病害检测. 湖北民族大学学报(自然科学版). 2024(03): 382-388 .
![]() |