• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
JIA Bingbing, ZHOU Xinnan, DING Shengli, et al. Effects of arbuscular mycorrhizal fungi inoculation on growth and salt ion accumulation of sunflower under different saline-alkali stresses[J]. Journal of South China Agricultural University, 2021, 42(3): 45-54. DOI: 10.7671/j.issn.1001-411X.202006044
Citation: JIA Bingbing, ZHOU Xinnan, DING Shengli, et al. Effects of arbuscular mycorrhizal fungi inoculation on growth and salt ion accumulation of sunflower under different saline-alkali stresses[J]. Journal of South China Agricultural University, 2021, 42(3): 45-54. DOI: 10.7671/j.issn.1001-411X.202006044

Effects of arbuscular mycorrhizal fungi inoculation on growth and salt ion accumulation of sunflower under different saline-alkali stresses

More Information
  • Received Date: June 20, 2020
  • Available Online: May 17, 2023
  • Objective 

    To investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation on sunflower (Helianthus annuus) growth and salt ion accumulation under different types of saline-alkali stress, and provide basic data and technical support for the utilization and bioremediation of different types of saline-alkali land.

    Method 

    A greenhouse pot experiment was conducted to investigate the effects of AM fungi Funneliformis mosseae on mycorrhizal colonization rate, biomass, nutrient uptake, C∶N∶P stoichiometry, Na+ absorption, photosynthesis and membrane permeability of sunflower under different types of salt-alkali stress (CK, NaCl, NaCl+Na2SO4, NaCl+NaHCO3).

    Result 

    Three types of saline-alkali stress decreased the mycorrhizal infection rate of sunflower inoculated with F. mosseae by 29.53% to 47.31%. Three types of saline-alkali stress all inhibited the growth of sunflower to a certain extent, and the order of the inhibition effect was NaCl+Na2SO4>NaCl+NaHCO3>NaCl. Inoculation with AM fungi increased the total dry weight of sunflower under salt-alkali stresses of NaCl, NaCl+Na2SO4 and NaCl+NaHCO3 by 19.58%, 42.15% and 60.35% respectively. Inoculation of AM fungi increased the shoot P contents of CK, NaCl and NaCl+NaHCO3 treatments by 82.50%, 71.11% and 74.47% respectively, and increased the root P contents of CK and NaCl+NaHCO3 treatments by 61.54% and 88.37% respectively. Inoculation of AM fungi significantly decreased the C∶P and N∶P in shoots and roots of CK and NaCl+NaHCO3 treatments and the C∶P and N∶P in shoots of NaCl treatment. The shoot and root Na+ accumulations of NaCl+NaHCO3 treatment increased by 33.76% and 82.25% with AM fungi inoculation respectively, and the root Na+ accumulation of NaCl+Na2SO4 treatment increased by 74.20%. Inoculation of AM fungi increased transpiration rates (Tr) of NaCl and NaCl+NaHCO3 treatments by 11.67% and 10.12% respectively, and increased stomatal conductance (Gs) of NaCl+NaHCO3 treatment by 20.00%. The net photosynthetic rate (Pn) in shoots under three types of salt-alkali stress showed an increasing trend. The membrane permeability of NaCl+NaHCO3 significantly decreased by 51.49% with AM fungi inoculation.

    Conclusion 

    AM fungi can alleviate the toxic effect of saline-alkali stress on sunflower growth to a certain extent, but its inoculation effect is significantly different among different types of saline-alkali stress.

  • [1]
    EVELIN H, DEVI T S, GUPTA S, et al. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges[J]. Frontiers in Plant Science, 2019, 10: 470. doi: 10.3389/fpls.2019.00470
    [2]
    何磊, 陆兆华, 管博, 等. 盐碱胁迫对两种高粱种子萌发及幼苗生长的影响[J]. 西北植物学报, 2012, 32(2): 362-369. doi: 10.3969/j.issn.1000-4025.2012.02.023
    [3]
    杨真, 王宝山. 中国盐渍土资源现状及改良利用对策[J]. 山东农业科学, 2015, 47(4): 125-130.
    [4]
    刘尧. 盐碱胁迫下唐古特白刺的生长和生理响应及其耐盐性评价[D]. 太谷: 山西农业大学, 2015.
    [5]
    黄艳辉. 内蒙古盐碱土中AM真菌多样性及提高宿主植物耐盐能力的研究[D]. 杨凌: 西北农林科技大学, 2007.
    [6]
    景宇鹏. 土默川平原盐渍化土壤改良前后土壤特性及玉米品种耐盐性研究[D]. 呼和浩特: 内蒙古农业大学, 2014.
    [7]
    杨玉坤, 耿计彪, 于起庆, 等. 盐碱地土壤利用与改良研究进展[J]. 农业与技术, 2019, 39(24): 108-111.
    [8]
    张立华, 赵益平, 张颖力, 等. 内蒙古向日葵生产现状及发展对策[J]. 内蒙古农业科技, 2007(5): 82-84.
    [9]
    李平, 牛燕冰, 杜占春, 等. 达拉特旗盐碱地改良调查报告[J]. 现代农业, 2019(4): 48-51. doi: 10.3969/j.issn.1008-0708.2019.04.043
    [10]
    阎海平. 种植向日葵能改良盐碱地[J]. 农业科技信息, 1994(8): 39.
    [11]
    王伟. 向日葵(Helianthus annuus L.)苗期耐盐性的研究[D]. 呼和浩特: 内蒙古农业大学, 2012.
    [12]
    张俊莲, 陈勇胜, 武季玲, 等. 向日葵对盐逆境伤害的生理反应及耐盐性研究[J]. 中国油料作物学报, 2003, 25(1): 45-49.
    [13]
    王伟, 于海峰, 张永虎, 等. 盐胁迫对向日葵幼苗生长和生理特性的影响[J]. 华北农学报, 2013, 28(1): 176-180. doi: 10.3969/j.issn.1000-7091.2013.01.032
    [14]
    SANTANDER C, AROCA R, RUIZ-LOZANO J M, et al. Arbuscular mycorrhiza effects on plant performance under osmotic stress[J]. Mycorrhiza, 2017, 27(7): 639-657. doi: 10.1007/s00572-017-0784-x
    [15]
    WU N, LI Z, LIU H G, et al. Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress[J]. Acta Physiologiae Plantarum, 2015, 37(9): 183. doi: 10.1007/s11738-015-1932-6
    [16]
    赵霞, 叶林, 纳学伟, 等. 盐碱胁迫下丛枝菌根真菌对紫花苜蓿渗透调节物质及抗氧化能力的影响[J]. 江苏农业学报, 2017, 33(4): 782-787. doi: 10.3969/j.issn.1000-4440.2017.04.009
    [17]
    叶林. 丛枝菌根真菌对西瓜盐碱胁迫的缓解效应及其调控机理[D]. 杨凌: 西北农林科技大学, 2019.
    [18]
    何奇江, 李楠, 傅懋毅, 等. 氯化钠胁迫对雷竹根系活力和细胞膜透性的影响[J]. 浙江农林大学学报, 2013, 30(6): 944-949. doi: 10.11833/j.issn.2095-0756.2013.06.021
    [19]
    王晓英, 王冬梅, 陈保冬, 等. 丛枝菌根真菌群落对白三叶草生长的影响[J]. 生态学报, 2010, 30(6): 1456-1462.
    [20]
    LIN J X, PENG X Y, HUA X Y, et al. Effects of arbuscular mycorrhizal fungi on Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition conditions: From osmotic adjustment and ion balance[J]. RSC Advances, 2018, 8(26): 14500-14509. doi: 10.1039/C8RA00721G
    [21]
    张良, 杨春雪. 盐碱胁迫对星星草-丛枝菌根真菌共生体酶活性及游离氨基酸的影响[J]. 东北林业大学学报, 2018, 46(11): 91-96. doi: 10.3969/j.issn.1000-5382.2018.11.019
    [22]
    马忠莉, 张露丹, 缪伊玲, 等. 盐碱胁迫下丛枝菌根真菌对羊草和虎尾草种间关系的影响[J]. 东北师大学报(自然科学版), 2014, 46(1): 124-129.
    [23]
    李少朋, 陈昢圳, 刘惠芬, 等. 丛枝菌根提高滨海盐碱地植物耐盐性的作用机制及其生态效应[J]. 生态环境学报, 2019, 28(2): 411-418.
    [24]
    李玉梅. 牛叠肚幼苗对盐碱胁迫的生理响应机制研究[D]. 沈阳: 沈阳农业大学, 2016.
    [25]
    RUIZ-LOZANO J M, PORCEL R, AZCÓN C, et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies[J]. Journal of Experimental Botany, 2012, 63(11): 4033-4044. doi: 10.1093/jxb/ers126
    [26]
    孙丽范. 利用耐盐碱解磷、解钾、固氮菌发酵菌糠制备菌肥的研究[D]. 天津: 天津大学, 2012.
    [27]
    陈飞, 王娜, 黄寿臣, 等. 松嫩盐碱草地星星草根围优势菌种对其耐盐碱性的影响[J]. 北方园艺, 2018, 14: 91-97.
    [28]
    GARG N, BHANDARI P. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress[J]. Plant Growth Regulation, 2016, 78(3): 371-387. doi: 10.1007/s10725-015-0099-x
    [29]
    遆晋松, 童文杰, 周媛媛, 等. 河套灌区向日葵耐盐指标评价[J]. 中国生态农业学报, 2014, 22(2): 177-184.
    [30]
    LIN J X, WANG Y N, SUN S N, et al. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J]. Science of the Total Environment, 2017, 576: 234-241. doi: 10.1016/j.scitotenv.2016.10.091
    [31]
    HASHEM A, ALQARAWI A A, RADHAKRISHNAN R, et al. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L.[J]. Saudi Journal of Biological Sciences, 2018, 25(6): 1102-1114. doi: 10.1016/j.sjbs.2018.03.009
    [32]
    CHEN J, ZHANG H, ZHANG X, et al. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+Homeostasis[J]. Frontiers in Plant Science, 2017, 8: 1739. doi: 10.3389/fpls.2017.01739
    [33]
    谭本会, 李虹. 铅离子对核桃幼苗细胞膜透性的影响[J]. 南方农业, 2018, 12(34): 42-44.
    [34]
    岳英男. 松嫩盐碱草地主要丛枝菌根真菌对植物耐盐性影响的研究[D]. 哈尔滨: 东北林业大学, 2015.
    [35]
    陈飞. 松嫩盐碱草地星星草根围AM真菌多样性及功能研究[D]. 哈尔滨: 东北林业大学, 2017.
  • Cited by

    Periodical cited type(2)

    1. 吕永东. 基于机器深度学习的小麦条播机双变量施肥控制方法. 中国农机装备. 2025(05): 108-111 .
    2. 郑金江. 基于VOSviewer无公害栽培技术的多维分析——发展、应用与新的挑战. 绿色科技. 2024(05): 161-167 .

    Other cited types(0)

Catalog

    Article views (825) PDF downloads (944) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return