• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
DENG Xiaoling, ZENG Guoliang, ZHU Zihao, et al. Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing[J]. Journal of South China Agricultural University, 2020, 41(6): 100-108. DOI: 10.7671/j.issn.1001-411X.202006042
Citation: DENG Xiaoling, ZENG Guoliang, ZHU Zihao, et al. Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing[J]. Journal of South China Agricultural University, 2020, 41(6): 100-108. DOI: 10.7671/j.issn.1001-411X.202006042

Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing

More Information
  • Received Date: June 18, 2020
  • Available Online: May 17, 2023
  • Objective 

    Combined with the advantages and disadvantages of traditional and modern agricultural pest monitoring, the method of monitoring pest and disease were discussed, which detected the diseased citrus plants by UAV hyperspectral remote sensing technology and judged the disease species and disease degree by artificial field investigation.

    Method 

    The original hyperspectral images were obtained by UAV. After spectral preprocessing and feature engineering, continuous projection algorithm was used to extract the feature wavelength combination which contributed the most to the classification of citrus diseased plants. Finally, the BP neural network and XgBoost algorithm were used based on the full band, and the logistic regression and support vector machine algorithm were used to establish the classification model based on the characteristic band.

    Result 

    The AUC scores of BP neural network and XgBoost were 0.8830 and 0.9120 respectively, and the accuracy rates of both methods were over 95%. The feature wavelength combination of 698 and 762 nm was extracted. Based on this characteristic band, the recall rates of logistic regression and support vector machine algorithm were 93.00% and 96.00% respectively.

    Conclusion 

    The model based on characteristic band shows high accuracy in the classification of disease samples, which proves the effectiveness of characteristic wavelength combination. This result can provide some data and theoretical support for monitoring diseases and pests in citrus plantations.

  • [1]
    DENG X, LAN Y, HONG T, et al. Citrus greening detection using visible spectrum imaging and C-SVC[J]. Comput Electron Agr, 2016, 130: 177-183. doi: 10.1016/j.compag.2016.09.005
    [2]
    陈波, 姚林建. 光谱检测技术在柑橘黄龙病诊断中的研究进展[J]. 赣南师范大学学报, 2018, 39(6): 69-72.
    [3]
    兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19.
    [4]
    纪景纯, 赵原, 邹晓娟, 等. 无人机遥感在农田信息监测中的应用进展[J]. 土壤学报, 2019, 56(4): 1-13.
    [5]
    黄文江, 张竞成, 师越, 等. 作物病虫害遥感监测与预测研究进展[J]. 南京信息工程大学学报(自然科学版), 2018, 10(1): 30-43.
    [6]
    LI X, LEE W S, LI M, et al. Spectral difference analysis and airborne imaging classification for citrus greening infected trees[J]. Comput Electron Agr, 2012, 83: 32-46. doi: 10.1016/j.compag.2012.01.010
    [7]
    KUMAR A, LEE W S, EHSANI R J, et al. Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques[J]. J Appl Remote Sens, 2012, 6(1): 63542. doi: 10.1117/1.JRS.6.063542
    [8]
    兰玉彬, 朱梓豪, 邓小玲, 等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报, 2019, 35(3): 92-100. doi: 10.11975/j.issn.1002-6819.2019.03.012
    [9]
    LAN Y, HUANG Z, DENG X. Comparison of machine learning methods for citrus greening detection on UAV multispectral images[J]. Comput Electron Agr, 2020, 171: 10524. doi: 10.1016/j.compag.2020.105234
    [10]
    李修华, 李民赞, LEE W S, et al. 柑桔黄龙病的可见−近红外光谱特征[J]. 光谱学与光谱分析, 2014, 34(6): 1553-1559. doi: 10.3964/j.issn.1000-0593(2014)06-1553-07
    [11]
    尚方信, 郭浩, 李钢, 等. 基于One-class SVM的噪声图像分割方法[J]. 计算机应用, 2019, 39(3): 874-881. doi: 10.11772/j.issn.1001-9081.2018071494
    [12]
    TAX D M J, DUIN R P W. Support vector data description[J]. Mach Learn, 2004(54): 45-66.
    [13]
    CHAWLA N V, BOWYER K W, HALL L O. SMOTE: Synthetic minority over-sampling technique[J]. J Artif Intell Res, 2002(16): 321-357.
    [14]
    成忠, 张立庆, 刘赫扬, 等. 连续投影算法及其在小麦近红外光谱波长选择中的应用[J]. 光谱学与光谱分析, 2010, 30(4): 949-952. doi: 10.3964/j.issn.1000-0593(2010)04-0949-04
    [15]
    高洪智, 卢启鹏, 丁海泉, 等. 基于连续投影算法的土壤总氮近红外特征波长的选取[J]. 光谱学与光谱分析, 2009, 29(11): 2951-2954. doi: 10.3964/j.issn.1000-0593(2009)11-2951-04
    [16]
    吴迪, 金春华, 何勇. 基于连续投影算法的光谱主成分组合优化方法研究[J]. 光谱学与光谱分析, 2009, 29(10): 2734-2737. doi: 10.3964/j.issn.1000-0593(2009)10-2734-04
    [17]
    CHEN T, GUESTRIN C. XgBoost: A scalable tree boosting system[C]//The 22nd ACM SIGKDD International Conference. ACM, 2016: 785-794.
    [18]
    王术波, 韩宇, 陈建, 等. 基于深度学习的无人机遥感生态灌区杂草分类[J]. 排灌机械工程学报, 2018, 36(11): 1137-1141.
    [19]
    高林, 杨贵军, 于海洋, 等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016, 32(22): 113-120. doi: 10.11975/j.issn.1002-6819.2016.22.016

Catalog

    Article views (1122) PDF downloads (1553) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return