• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHANG Long, SONG Shuran, SUN Daozong, et al. Response of droplet diameter of agricultural spray nozzle to liquid viscosity[J]. Journal of South China Agricultural University, 2021, 42(2): 102-109. DOI: 10.7671/j.issn.1001-411X.202006012
Citation: ZHANG Long, SONG Shuran, SUN Daozong, et al. Response of droplet diameter of agricultural spray nozzle to liquid viscosity[J]. Journal of South China Agricultural University, 2021, 42(2): 102-109. DOI: 10.7671/j.issn.1001-411X.202006012

Response of droplet diameter of agricultural spray nozzle to liquid viscosity

More Information
  • Received Date: June 04, 2020
  • Available Online: May 17, 2023
  • Objective 

    To study the effect of different viscosities of pesticides on the atomization characteristics of spray nozzles, and provide a theoretical reference for agricultural pesticide spray technology.

    Method 

    Different mass fractions of glycerol solution were configured to replace pesticide reagents for research. The spray area of the spray nozzle was gridded, and the phase Doppler anemometry was used to measure droplet parameters at different positions in the spray area. The statistical law of droplet size in the axial direction and radial direction was analyzed using SPSS.

    Result 

    In the axis direction of the spray area of the nozzle, arithmetic mean diameter, volume mean diameter, and Sauter mean diameter showed the law of first becoming smaller and then gradually increasing. The disturbance of the external air resistance made a certain pattern of surface waves on the surface of the ejected liquid. As the distance increased, the amplitude of the waves became larger, and the wave crests were torn off and broken into small droplets. Then under the action of gravity, the droplets collided and aggregated, and the droplet size gradually increased. In the radial direction of the spray area of the nozzle, the droplets were approximately symmetrically distributed, and the size of the droplets was small in the middle and large on the two sides. With the increase of the radial distance, the size of the droplets gradually increased. SPSS analysis showed that in the axial direction of the spray area the correlation coefficients of axial distance, liquid viscosity with droplet size were 0.531 and 0.795 respectively. In the radial direction the correlation coefficients of radial distance, liquid viscosity with droplet size were 0.932 and 0.328 respectively.

    Conclusion 

    To a certain extent, liquids with greater viscosity have a certain effect of preventing drift. The changes in liquid viscosity have a significant effect on the droplet size in the axial direction. In the axial direction of the nozzle, changes in distance have a significant effect on the droplet size.

  • [1]
    许晏铭, 刘建河, 李星光. 液体物性对静电喷雾雾化性能的研究[J]. 排灌机械工程学报, 2018, 45(7): 793-798.
    [2]
    MANSOUR A, CHIGIER N. Air-blast atomization of non-Newtonian liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 58(2): 161-194.
    [3]
    DAI X, XU Y, ZHENG J, et al. Analysis of the variability of pesticide concentration downstream of inline mixers for direct nozzle injection systems[J]. Biosystems Engineering, 2019, 180(13): 59-69.
    [4]
    范力更. 我国植保机械和施药技术的现状、问题及对策[J]. 农业开发与装备, 2018, 8(2): 15-21. doi: 10.3969/j.issn.1673-9205.2018.02.013
    [5]
    任少伟, 杨传民, 陈国营, 等. 大豆蛋白液喷雾场粒度分布变化[J]. 包装工程, 2018, 39(17): 46-52.
    [6]
    吴亚垒, 祁力钧, 张亚, 等. 基于驻波与ZigBee实时监测雾滴蒸发系统设计与试验[J]. 农业工程学报, 2017, 33(17): 128-135. doi: 10.11975/j.issn.1002-6819.2017.17.017
    [7]
    张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. doi: 10.6041/j.issn.1000-1298.2014.10.009
    [8]
    王沛, 祁力钧, 李慧, 等. 植物叶片表面结构对雾滴沉积的影响分析[J]. 农业机械学报, 2013, 44(10): 75-79. doi: 10.6041/j.issn.1000-1298.2013.10.013
    [9]
    兰玉彬, 张海艳, 文晟, 等. 静电喷嘴雾化特性与沉积效果试验分析[J]. 农业机械学报, 2018, 49(4): 130-139. doi: 10.6041/j.issn.1000-1298.2018.04.015
    [10]
    张慧春, GARY D, 郑加强, 等. 扇形喷头雾滴粒径分布风洞试验[J]. 农业机械学报, 2012, 43(6): 53-57. doi: 10.6041/j.issn.1000-1298.2012.06.010
    [11]
    张京, 宋坚利, 何雄奎, 等. 扇形雾喷头雾化过程中雾滴运动特性[J]. 农业机械学报, 2011, 42(4): 66-69.
    [12]
    张慧春, 郑加强, 周宏平, 等. 农药喷施过程中雾滴沉积分布与脱靶飘移研究[J]. 农业机械学报, 2017, 48(8): 114-122. doi: 10.6041/j.issn.1000-1298.2017.08.012
    [13]
    AUNG N Z, YANG Q, CHEN M, et al. CFD analysis of flow forces and energy loss characteristics in a flapper-nozzle pilot valve with different null clearances[J]. Energy Conversion and Management, 2014, 83(45): 284-295.
    [14]
    DE DOMENICO F, ROLLAND E O, HOCHGREB S. A generalised model for acoustic and entropic transfer function of nozzles with losses[J]. Journal of Sound and Vibration, 2019, 440(43): 212-230.
    [15]
    文晟, 兰玉彬, 张建桃, 等. 农用无人机超低容量旋流喷嘴的雾化特性分析与试验[J]. 农业工程学报, 2016, 32(20): 85-93. doi: 10.11975/j.issn.1002-6819.2016.20.011
    [16]
    王果, 龚燕, 张晓, 等. 不同施药机具在玉米田间的雾滴沉积分布试验[J]. 农机化研究, 2017(6): 177-182. doi: 10.3969/j.issn.1003-188X.2017.06.035
    [17]
    朱增强, 王冉冉. 烟雾机喷嘴雾化仿真研究[J]. 装备制造技术, 2018(7): 51-54. doi: 10.3969/j.issn.1672-545X.2018.07.017
    [18]
    祁力钧, 傅泽田. 不同条件下喷雾分布试验研究[J]. 农业工程学报, 1999, 15(2): 113-117.
    [19]
    张瑞瑞, 张真, 徐刚, 等. 喷雾助剂类型及浓度对喷头雾化效果影响[J]. 农业工程学报, 2018, 34(20): 36-43. doi: 10.11975/j.issn.1002-6819.2018.20.005
    [20]
    王潇楠, 何雄奎, 宋坚利, 等. 助剂类型及浓度对不同喷头雾滴飘移的影响[J]. 农业工程学报, 2015, 31(22): 49-55. doi: 10.11975/j.issn.1002-6819.2015.22.007
    [21]
    何玲, 王国宾, 胡韬, 等. 喷雾助剂及施液量对植保无人机喷雾雾滴在水稻冠层沉积分布的影响[J]. 植物保护学报, 2017, 44(6): 1046-1052.
    [22]
    唐青, 陈立平, 张瑞瑞, 等. 高速气流条件下标准扇形喷头和空气诱导喷头雾化特性[J]. 农业工程学报, 2016, 32(22): 121-128. doi: 10.11975/j.issn.1002-6819.2016.22.017
    [23]
    赵辉, 宋坚利, 曾爱军, 等. 喷雾液动态表面张力与雾滴粒径关系[J]. 农业机械学报, 2009, 40(8): 74-79.
    [24]
    肖丽萍, 刘木华, ZHU HEPING, 等. 喷嘴喷施不同生物农药雾滴特性研究[J]. 农业机械学报, 2018, 49(2): 100-106. doi: 10.6041/j.issn.1000-1298.2018.02.013
    [25]
    LEE C H, REITZ R D. An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J]. International Journal of Multiphase Flow, 2000, 26(2): 229-244. doi: 10.1016/S0301-9322(99)00020-8
  • Related Articles

    [1]XU Ying, QIU Yangyang, SHEN Yue, FENG Huixin, FENG Yunyun, HUANG Xianhui. Preparation of enrofloxacin nanoemulsion and evaluation of pharmacodynamic of spray administration[J]. Journal of South China Agricultural University, 2021, 42(1): 42-48. DOI: 10.7671/j.issn.1001-411X.202001030
    [2]CEN Zhenzhao, YUE Xuejun, WANG Linhui, LING Kangjie, CHENG Ziyao, LU Yang. Design and test of self-adaptive variable spray system of UAV based on neural network PID[J]. Journal of South China Agricultural University, 2019, 40(4): 100-108. DOI: 10.7671/j.issn.1001-411X.201811017
    [3]CHEN Shengde, LAN Yubin, ZHOU Zhiyan, LIAO Juan, ZHU Qiuyang. Effects of spraying parameters of small plant protection UAV on droplets deposition distribution in citrus canopy[J]. Journal of South China Agricultural University, 2017, 38(5): 97-102. DOI: 10.7671/j.issn.1001-411X.2017.05.017
    [4]WANG Linhui, GAN Haiming, YUE Xuejun, LAN Yubin, WANG Jian, LIU Yongxin, LING Kangjie, CEN Zhenzhao. Design of a precision spraying control system with unmanned aerial vehicle based on image recognition[J]. Journal of South China Agricultural University, 2016, 37(6): 23-30. DOI: 10.7671/j.issn.1001-411X.2016.06.004
    [5]LAN Yubin, PENG Jin, JIN Ji. Research status and development of pesticide spraying droplet size[J]. Journal of South China Agricultural University, 2016, 37(6): 1-9. DOI: 10.7671/j.issn.1001-411X.2016.06.001
    [6]YUE Xue-jun,CHEN Shan,LU Yong-chao,LI Zhen,WANG Wan-zhang. Experiment of Shield Effects on Spray Breadth[J]. Journal of South China Agricultural University, 2008, 29(3). DOI: 10.7671/j.issn.1001-411X.2008.03.022
    [7]C. SINFORT,B. TISSEYRE,SONG Shu-ran,HONG Tian-sheng,WANG Wei-xing,ZHAO Xin,C. SINFORT,B. TISSEYRE. The Deposit Distribution of Spraying Droplet Based on DGPS in Rice Fields[J]. Journal of South China Agricultural University, 2006, 27(3): 97-99. DOI: 10.7671/j.issn.1001-411X.2006.03.027
    [8]LI Jian-guo,HUANG Xu-ming,HUANG Hui-bai. NAA sprays increased litchi fruit size and its roles[J]. Journal of South China Agricultural University, 2004, 25(2): 10-12. DOI: 10.7671/j.issn.1001-411X.2004.02.003
    [9]Cen Yijing, Tian Mingyi. Advances in the Use of Petroleum Spray Oils in Control of Pests in Citrus[J]. Journal of South China Agricultural University, 1999, (2): 118-122.
    [10]Zeng Xinnian, zhao Shanhuan. INVSTIGATIONS ON TIMING SPRAY INSECTECICIDE AGAINST CITRUS LEAFMINER(Phyllocnistis citrella Stainton)[J]. Journal of South China Agricultural University, 1995, (1): 44-49.
  • Cited by

    Periodical cited type(0)

    Other cited types(4)

Catalog

    Article views (1023) PDF downloads (1390) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return