Citation: | CHEN Chun, YAN Xiancheng, LUO Wenlong, et al. Biological effect and targeted mutation screening of space-induced mutagenesis and heavy ion radiation in rice[J]. Journal of South China Agricultural University, 2021, 42(1): 49-60. DOI: 10.7671/j.issn.1001-411X.202004012 |
To compare the biological effects and variation frequency of two mutagenesis methods, including space mutation and heavy ion radiation, in different generations of rice (Oryza sativa L.), and provide some methods and theoretical guidances for rice mutation breeding.
The dry seeds of pure line rice variety ‘Huahang 31’ were treated using space mutation and different dose of heavy ion radiation, and the seeds without mutation treatment were used as the control. The phenotypic and cytological mutagenic effects of the 1st generation of mutation (M1) were analyzed. The amylose content and grain shape trait of the 2nd generation of mutation (M2) were screened by phenotypic and genotypic targeted screening. The variation frequencies in M2 of two mutation treatments were compared.
The seed vigor index of space mutation M1 was 14.62% lower than that of the control. The seed vigor index of heavy ion radiation M1 showed a saddle effect curve with the increase of radiation dose, and the seed vigor index of 10 Gy heavy ion radiation M1 was 14.92% lower than that of the control which was like the mutation effect of space mutation. The grain type and amylose content mutation frequencies of space-induced M2 were 4.14% and 1.61% respectively, while the grain type and amylose content mutation frequencies of 80 Gy heavy ion radiation were 4.88% and 1.55% respectively. When HRM technology was used to scan the 673 bp sequences of four intervals of Wx gene, three SNP mutations were found in 4 736 samples of space-induced with a mutation density of 1/1063.83 kb. Four SNP mutations were found in 4 848 samples of heavy ion radiation with a mutation density of 1/815.68 kb.
Two kinds of mutagenic treatments can induce the character variations of rice. The physiological effects of space-induced mutagenesis M1 is similar to low-dose heavy ion radiation, and the mutation frequency of M2 is similar to high-dose heavy ion radiation.
[1] |
ZHAO K, TUNG C W, EIZENGA G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011, 2(1): 467. doi: 10.1038/ncomms1467
|
[2] |
GLASZMANN J C, KILIAN B, UPADHYAYVA H D, et al. Accessing genetic diversity for crop improvement[J]. Current Opinion in Plant Biology, 2010, 13(2): 167-173. doi: 10.1016/j.pbi.2010.01.004
|
[3] |
刘录祥, 王晶, 赵林姝, 等. 作物空间诱变效应及其地面模拟研究进展[J]. 核农学报, 2004, 18(4): 247-251. doi: 10.3969/j.issn.1000-8551.2004.04.002
|
[4] |
周利斌, 李文建, 曲颖, 等. 重离子束辐照育种研究进展及发展趋势[J]. 原子核物理评论, 2008(2): 71-76.
|
[5] |
陈志强, 郭涛, 刘永柱, 等. 水稻航天育种研究进展与展望[J]. 华南农业大学学报, 2009, 30(1): 7-11.
|
[6] |
李东芳, 倪丕冲, 沈桂芳. 水稻航天诱变育种及其机理研究的进展与展望[J]. 生物技术通报, 2004(3): 23-25. doi: 10.3969/j.issn.1002-5464.2004.03.006
|
[7] |
樊秋玲, 刘敏. 空间育种研究进展[J]. 航天医学与医学工程, 2002, 15(3): 231-234. doi: 10.3969/j.issn.1002-0837.2002.03.020
|
[8] |
史金铭. 空间和重离子辐射环境的诱变效应与DNA甲基化变化的关联[D]. 哈尔滨: 哈尔滨工业大学, 2010.
|
[9] |
OGATA T, TESHIMA T, KAGAWA K, et al. Particle irradiation suppresses metastatic potential of cancer cells[J]. Cancer Research, 2005, 65(1): 113-120.
|
[10] |
SHI J M, LU W H, SUN Y Q. Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa)[J]. Life Sciences in Space Research, 2014(1): 74-79.
|
[11] |
WEI L, YANG Q, XIA H, et al. Analysis of cytogenetic damage in rice seeds induced by energetic heavy ions on-ground and after spaceflight[J]. Journal of Radiation Research, 2006, 47(3/4): 273-278. doi: 10.1269/jrr.0613
|
[12] |
王巍. 空间诱导水稻蛋白变化特征及空间辐射地基模拟诱因分析[D]. 哈尔滨: 哈尔滨工业大学, 2011.
|
[13] |
严文潮, 徐建龙, 俞法明, 等. 不同早籼基因型水稻的空间诱变效应研究[J]. 核农学报, 2004, 18(3): 174-178. doi: 10.3969/j.issn.1000-8551.2004.03.005
|
[14] |
刘向东, 卢永根. 整体荧光原位杂交用于检测水稻特异DNA程序的研究[J]. 华南农业大学学报, 1998, 19(3): 1-4.
|
[15] |
BUSH S M, KRYSAN P J. ITILLING: A personalized approach to the identification of induced mutations in Arabidopsis[J]. Plant Physiology, 2010, 154(1): 25-35. doi: 10.1104/pp.110.159897
|
[16] |
SIMKO I. High-resolution DNA melting analysis in plant research[J]. Trends in Plant Science, 2016, 21(6): 528-537. doi: 10.1016/j.tplants.2016.01.004
|
[17] |
马良勇, 季芝娟, 曾宇翔, 等. 不同航天器搭载对籼稻诱变效果的比较[J]. 核农学报, 2011, 25(1): 7-11.
|
[18] |
刘永柱, 许立超, 郭涛, 等. 2个三系杂交稻保持系航天诱变效应的研究[J]. 华南农业大学学报, 2013, 34(3): 292-299. doi: 10.7671/j.issn.1001-411X.2013.03.003
|
[19] |
俞法明, 严文潮, 毛雪琴, 等. 利用空间诱变技术进行早籼稻新品种的改良[J]. 核农学报, 2014, 28(6): 949-954. doi: 10.11869/j.issn.100-8551.2014.06.0949
|
[20] |
黄永相, 郭涛, 蔡金洋. 空间环境和60Co-γ辐照对水稻稻米品质的诱变效应[J]. 核农学报, 2013, 27(6): 709-714. doi: 10.11869/hnxb.2013.06.0709
|
[21] |
XU X, LIU B, ZHANG L, et al. Mutagenic effects of heavy ion irradiation on rice seeds[J]. Nuclear Instruments & Methods in Physics Research, 2012, 290(1): 19-25.
|
[22] |
卢明. 低能重离子C和Li及Co-γ射线对水稻的生物学效应研究[D]. 长沙: 湖南农业大学, 2005.
|
[23] |
梅曼彤, 邓红, 卢永根. 高能重离子辐射对水稻的生物学效应[J]. 作物学报, 1995, 21(3): 307-314. doi: 10.3321/j.issn:0496-3490.1995.03.008
|
[24] |
程维民, 刘斌美, 叶亚峰. 重离子辐照创建水稻直链淀粉、蛋白质突变系的研究[J]. 中国农学通报, 2016, 6(32): 86-90.
|
[25] |
杨瑰丽, 陈莹, 郭涛, 等. 碳离子束辐照水稻诱变效应及突变体的筛选[J]. 华南农业大学学报, 2018, 39(2): 29-33. doi: 10.7671/j.issn.1001-411X.2018.02.005
|
[26] |
MANI S, TABIL L G, SOKHANSANJ S. Mechanical properties of corn stover grind[J]. Transactions of the ASAE, 2004, 47(6): 1983-1990. doi: 10.13031/2013.17786
|
[27] |
易继财, 庄楚雄, 姚涓, 等. 空间搭载诱导水稻种子突变的分子标记多态性分析[J]. 生物物理学报, 2002, 18(4): 478-483. doi: 10.3321/j.issn:1000-6737.2002.04.019
|
[28] |
骆艺, 王旭杰, 梅曼彤, 等. 空间搭载水稻种子后代基因组多态性及其与空间重离子辐射关系的探讨[J]. 生物物理学报, 2006, 22(2): 131-138. doi: 10.3321/j.issn:1000-6737.2006.02.010
|
[29] |
刘自增, 吴周良, 阎萍, 等. 高分辨率熔解曲线分析应用的研究进展[J]. 中国畜牧兽医, 2013, 40(8): 105-111. doi: 10.3969/j.issn.1671-7236.2013.08.024
|
[30] |
李贵成, 王林辉, 罗红兵. 重离子辐射玉米种子的细胞学观察[J]. 湖南农业大学学报(自然科学版), 2007, 33(5): 48-50.
|
[31] |
LANDAU A, LENCINA F, PACHECO M G, et al. Plastome mutations and recombination events in barley chloroplast mutator seedlings[J]. Journal of Heredity, 2016, 107(3): 266-273. doi: 10.1093/jhered/esw003
|
[32] |
BOTTICELLA E, SESTILI F, HEMANDEZ-LOPEZ A, et al. High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes[J]. BMC Plant Biology, 2011, 11(1): 1-14. doi: 10.1186/1471-2229-11-1
|
[33] |
KIM S I, TAI T H. Identification of novel rice low phytic acid mutations via TILLING by sequencing[J]. Molecular Breeding, 2014, 34(4): 1731-1732. doi: 10.1007/s11032-014-0187-z
|
[34] |
王彩芬, 马晓玲, 安永平, 等. TILLING术在水稻耐盐基因SKC1突变体筛选中的应用[J]. 作物杂志, 2013(5): 66-70. doi: 10.3969/j.issn.1001-7283.2013.05.019
|
[35] |
HWANG J E, JANG D S, LEE K J, et al. Identification of gamma ray irradiation-induced mutations in membrane transport genes in a rice population by TILLING[J]. Genes & Genetic Systems, 2016, 91(5): 245-256.
|
[36] |
DU Y, LI W, YU L, et al. Mutagenic effects of carbon-ion irradiation on dry Arabidopsis thaliana seeds[J]. Mutation Research, 2014, 759: 28-36. doi: 10.1016/j.mrgentox.2013.07.018
|
[1] | WEN Fei, MO Jiawei, HU Yuqi, LAN Yubin, CHEN Xin, LU Jianqiang, DENG Xiaoling. The assessment of litchi flowering growth based on remote sensing image of convolutional neural network[J]. Journal of South China Agricultural University, 2023, 44(1): 123-133. DOI: 10.7671/j.issn.1001-411X.202203040 |
[2] | PENG Xu, RAO Yuan, QIAO Yan. Detection method of abnormal agricultural data based on broad convolution neural network[J]. Journal of South China Agricultural University, 2022, 43(2): 113-121. DOI: 10.7671/j.issn.1001-411X.202103050 |
[3] | ZHU Deli, LIN Zhijian. A corn silk detection method based on MF-SSD convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(6): 109-118. DOI: 10.7671/j.issn.1001-411X.202006025 |
[4] | FAN Xiangpeng, ZHOU Jianping, XU Yan. Recognition of field maize leaf diseases based on improved regional convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(6): 82-91. DOI: 10.7671/j.issn.1001-411X.202008022 |
[5] | PENG Wen, LAN Yubin, YUE Xuejun, CHENG Ziyao, WANG Linhui, CEN Zhenzhao, LU Yang, HONG Jinbao. Research on paddy weed recognition based on deep convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(6): 75-81. DOI: 10.7671/j.issn.1001-411X.202007029 |
[6] | DAI Zehan, ZHENG Zheng, HUANG Lishu, LAI Yunyan, BAO Minli, XU Meirong, DENG Xiaoling. Recognition of Huanglongbing symptom based on deep convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(4): 111-119. DOI: 10.7671/j.issn.1001-411X.201909031 |
[7] | LI Jing, CHEN Guifen, AN Yu. Image recognition of Pyrausta nubilalis based on optimized convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(3): 110-116. DOI: 10.7671/j.issn.1001-411X.201907017 |
[8] | WANG Jiasheng, CHEN Yan, ZENG Zeqin, LI Jiawei, LIU Weiwei, ZOU Xiangjun. Extraction of litchi fruit pericarp defect based on a fully convolutional neural network[J]. Journal of South China Agricultural University, 2018, 39(6): 104-110. DOI: 10.7671/j.issn.1001-411X.2018.06.016 |
[9] | XU Yong-chun,ZHANG Sen-wen. The Application on the Sugar Cane Forecast with the Neural Networks Using Improved Genetic Algorithms[J]. Journal of South China Agricultural University, 2010, 31(3): 102-104. DOI: 10.7671/j.issn.1001-411X.2010.03.023 |
[10] | ZHONG Tan-wei. Multidimensional MP model in neural network[J]. Journal of South China Agricultural University, 2004, 25(2): 121-122. DOI: 10.7671/j.issn.1001-411X.2004.02.032 |
1. |
池美香,陈韶萍,黄婷,陈世雄,梁勇,邱荣洲. 柑橘黄龙病田间症状识别图像数据集. 中国科学数据(中英文网络版). 2025(01): 52-61 .
![]() | |
2. |
骆润玫,殷惠莉,刘伟康,胡凯,廖飞,刘泽乾,曹亚芃,李强,王卫星. 基于YOLOv5-C的广佛手病虫害识别. 华南农业大学学报. 2023(01): 151-160 .
![]() | |
3. |
殷献博,邓小玲,兰玉彬,陈欣. 基于改进YOLOX-Nano算法的柑橘梢期长势智能识别. 华南农业大学学报. 2023(01): 142-150 .
![]() | |
4. |
梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
![]() | |
5. |
汪莹,刘静远,吕文刚,龙海,刘宵宵,余道坚,方毅,郑铭森,张浩,陈冬美,高瑞芳. 基于卷积神经网络的昆虫和杂草标本智能全维识别方法初探. 植物检疫. 2023(02): 40-45 .
![]() | |
6. |
王慧,李康顺,蔡铁,王文祥,董纯铿. 基于约束性多目标优化算法的柑橘黄龙病识别算法. 江苏农业科学. 2023(06): 159-167 .
![]() | |
7. |
马军磊,栗伟周,张赞. 基于PP-YOLO的电子焊接实训装置安全报警系统. 许昌学院学报. 2023(02): 116-121 .
![]() | |
8. |
李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 .
![]() | |
9. |
杨雪. 基于DCGAN的数据增强方法. 江苏通信. 2023(02): 97-100+107 .
![]() | |
10. |
边坤,梁慧. 基于机器学习的图案分类研究进展. 图学学报. 2023(03): 415-426 .
![]() | |
11. |
胡凯,骆润玫,刘泽乾,曹亚芃,廖飞,王卫星,李强,孙道宗. 基于改进SSD的广佛手病虫害检测方法. 南京农业大学学报. 2023(04): 813-821 .
![]() | |
12. |
王治兵,吴丽丽. 基于改进的MobilenetV3苹果叶片病害图像识别技术. 软件工程. 2023(08): 20-25 .
![]() | |
13. |
刘拥民,胡魁,聂佳伟,谢铁强. 基于MSDB-ResNet的水稻病虫害识别. 华南农业大学学报. 2023(06): 978-985 .
![]() | |
14. |
赵法川,徐晓辉,宋涛,郝淼淼,汪曙,朱伟龙. 融合多头注意力的轻量级作物病虫害识别. 华南农业大学学报. 2023(06): 986-994 .
![]() | |
15. |
李志臣,凌秀军,李鸿秋,李志军. 基于改进EfficientNet的板栗分级方法. 中国农机化学报. 2023(12): 180-185 .
![]() | |
16. |
徐兢成,王丽华. 基于AlexNet网络的交通标志识别方法. 无线电工程. 2022(03): 470-475 .
![]() | |
17. |
周巧黎,马丽,曹丽英,于合龙. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别. 智慧农业(中英文). 2022(01): 47-56 .
![]() | |
18. |
胡哲,徐承志,雷光波,徐丽. 基于改进YOLOv5的X射线图像铸件缺陷实时检测. 激光杂志. 2022(05): 54-59 .
![]() | |
19. |
叶名炀,张杰强. 基于轻量化网络MobileNetV2的玉米病害识别研究. 现代计算机. 2022(11): 46-50 .
![]() | |
20. |
钟友闻,车文刚,高盛祥. 轻型多尺度黑色素瘤目标检测网络模型的建立:基于注意力机制调控. 南方医科大学学报. 2022(11): 1662-1671 .
![]() | |
21. |
滕明洪,谭立新. 基于EfficientNetV2和迁移学习的葡萄病害识别研究. 软件. 2022(11): 43-49 .
![]() | |
22. |
陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 农业工程学报. 2022(22): 123-132 .
![]() | |
23. |
卢慧林,陈大嵩,陈逢浩,叶静文,欧阳革成. 基于纳米孔测序技术的柑橘黄龙病检测方法建立. 环境昆虫学报. 2021(06): 1596-1600 .
![]() |