MA Qiuqin, WANG Yusheng, LIANG Kuan, et al. Identification of autophagy-related genes in fall armyworm, Spodoptera frugiperda[J]. Journal of South China Agricultural University, 2021, 42(1): 93-100. DOI: 10.7671/j.issn.1001-411X.202004007
    Citation: MA Qiuqin, WANG Yusheng, LIANG Kuan, et al. Identification of autophagy-related genes in fall armyworm, Spodoptera frugiperda[J]. Journal of South China Agricultural University, 2021, 42(1): 93-100. DOI: 10.7671/j.issn.1001-411X.202004007

    Identification of autophagy-related genes in fall armyworm, Spodoptera frugiperda

    More Information
    • Received Date: April 02, 2020
    • Available Online: May 17, 2023
    • Objective 

      To identify autophagy-related genes (Atg) in fall armyworm (Spodoptera frugiperda) genome and their response to viral infection in S. frugiperda, and provide a basis for further research on the molecular mechanism of autophagy.

      Method 

      Autophagy-related protein (ATG) sequences from various species, such as human (Homo sapiens) and fruit fly (Drosophila melanogaster), were aligned and analyzed for sequence similarity. ATG sequences in S. frugiperda genome were searched. Conservative domain (CD) of the candidate ATG were analyzed by NCBI CD search. Furthermore, qRT-PCR was used to detect the expression changes of Atgs in Sf9 cells after infection by recombinant EGFP-AcMNPV.

      Result 

      We identified more than ten core Atgs which were involved in autophagosome formation in S. frugiperda, including the complete sequences of Atg3, Atg5, Atg6, Atg7, Atg10, Atg12, Atg13 and Atg101, and the partial sequences of Atg1, Atg2, Atg4, Atg9, Atg14, Atg16, Atg17 and Atg18. The expression levels of S. frugiperda Atg2, Atg4, Atg5, Atg6, Atg7, Atg8 and Atg12 were up-regulated after 6 to 12 hours infection by EGFP-AcMNPV.

      Conclusion 

      Eukaryotic conserved Atgs exist in the genome of S. frugiperda, indicating the autophagy pathway in S. frugiperda is evolutionarily conserved. AcMNPV infection might trigger the autophagic response in Sf9 cells.

    • [1]
      KUO C, HANSEN M, TROEMEL E. Autophagy and innate immunity: Insights from invertebrate model organisms[J]. Autophagy, 2018, 14(2): 233-242. doi: 10.1080/15548627.2017.1389824
      [2]
      YIN Z, PASCUAL C, KLIONSKY D J. Autophagy: Machinery and regulation[J]. Microbial Cell, 2016, 3(12): 588-596. doi: 10.15698/mic2016.12.546
      [3]
      SHENG R, QIN Z H. History and current status of autophagy research[J]. Advances in Experimental Medicine and Biology, 2019, 1206: 3-37.
      [4]
      MATSUURA A, TSUKADA M, WADA Y, et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae[J]. Gene, 1997, 192(2): 245-250. doi: 10.1016/S0378-1119(97)00084-X
      [5]
      OHSUMI Y. Protein turnover[J]. International Union of Biochemistry and Moleular Biology: Life, 2006, 58(5/6): 363-369.
      [6]
      SUZUKI H, OSAWA T, FUJIOKA Y, et al. Structural biology of the core autophagy machinery[J]. Current Opinion in Structural Biology, 2017, 43: 10-17. doi: 10.1016/j.sbi.2016.09.010
      [7]
      PALMISANO N J, MELÉNDEZ A. Autophagy in C. elegans development[J]. Developmental Biology, 2019, 447(1): 103-125. doi: 10.1016/j.ydbio.2018.04.009
      [8]
      YANO T, MITA S, OHMORI H, et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila[J]. Nature Immunology, 2008, 9(8): 908-916. doi: 10.1038/ni.1634
      [9]
      TALLOCZY Z, VIRGIN H T, LEVINE B. PKR-dependent autophagic degradation of herpes simplex virus type 1[J]. Autophagy, 2006, 2(1): 24-29. doi: 10.4161/auto.2176
      [10]
      MARCHLER-BAUER A, BO Y, HAN L, et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Research, 2017, 45(D1): D200-D203. doi: 10.1093/nar/gkw1129
      [11]
      LUCKOW V A, LEE S C, BARRY G F, et al. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli[J]. Journal of Virology, 1993, 67(8): 4566-4579. doi: 10.1128/JVI.67.8.4566-4579.1993
      [12]
      SHANG H, GARRETSON T A, KUMAR C M S, et al. Improved pFastBacTM donor plasmid vectors for higher protein production using the Bac-to-Bac® baculovirus expression vector system[J]. Journal of Biotechnology, 2017, 255: 37-46. doi: 10.1016/j.jbiotec.2017.06.397
      [13]
      余倩. 斜纹夜蛾核多角体病毒诱导细胞凋亡的研究[D]. 广州: 中山大学, 2008.
      [14]
      SALEM T Z, ALLAM W R, THIEM S M. Verifying the stability of selected genes for normalization in q-PCR experiments of Spodoptera frugiperda cells during AcMNPV infection[J]. PLoS One, 2014, 9(10): e108516. doi: 10.1371/journal.pone.0108516
      [15]
      LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
      [16]
      谢昆, 王丽仙, 王靖, 等. 草地贪夜蛾Sf9细胞对饥饿诱导自噬的响应[J]. 华北农学报, 2017, 32(3): 91-95. doi: 10.7668/hbnxb.2017.03.014
      [17]
      杨韵, 卢淼青, 张阳, 等. 高效氯氰菊酯对草地贪夜蛾Sf9细胞自噬的诱导作用[J]. 农药学学报, 2017, 19(2): 176-181.
      [18]
      VEERAN S, CUI G, SHU B, et al. Curcumin-induced autophagy and nucleophagy inSpodoptera frugiperda Sf9 insect cells occur via PI3K/AKT/TOR pathways[J]. Journal of Cell Biochemistry, 2018, 120(2): 2119-2137.
      [19]
      CUI G, SHU B, VEERAN S, et al. Natural beta-carboline alkaloids regulate the PI3K/Akt/mTOR pathway and induce autophagy in insect Sf9 cells[J]. Pesticide Biochemistry and Physiology, 2019, 154: 67-77. doi: 10.1016/j.pestbp.2018.12.005
      [20]
      REN C, FINKEL S E, TOWER J. Conditional inhibition of autophagy genes in adult Drosophila impairs immunity without compromising longevity[J]. Experimental Gerontology, 2009, 44(3): 228-235. doi: 10.1016/j.exger.2008.10.002
      [21]
      VORONIN D, COOK D A, STEVEN A, et al. Autophagy regulates Wolbachia populations across diverse symbiotic associations[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): E1638-E1646. doi: 10.1073/pnas.1203519109
      [22]
      SHELLY S, LUKINOVA N, BAMBINA S, et al. Autophagy is an essential component of drosophila immunity against vesicular stomatitis virus[J]. Immunity, 2009, 30(4): 588-598. doi: 10.1016/j.immuni.2009.02.009
      [23]
      NAKAMOTO M, MOY R H, XU J, et al. Virus recognition by toll-7 activates antiviral autophagy in Drosophila[J]. Immunity, 2012, 36(4): 658-667. doi: 10.1016/j.immuni.2012.03.003
      [24]
      张晓娟. 棉铃虫细胞自噬相关基因Atg8的分子特征以及对昆虫生长发育的影响[D]. 武汉: 华中师范大学, 2014.
      [25]
      王霞. Atg6对棉铃虫繁殖的影响及其在昆虫细胞自噬中的作用[D]. 武汉: 华中师范大学, 2014.
      [26]
      YU F, HAO P, YE C, et al. NlATG1 gene participates in regulating autophagy and fission of mitochondria in the brown planthopper, Nilaparvata lugens[J]. Frontiers in Physiology, 2020, 10: 1622. doi: 10.3389/fphys.2019.01622

    Catalog

      Article views (1003) PDF downloads (992) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return