Citation: | NIE Jingjing, WANG Wenxiang, HUA Chengyun, et al. Determination of ponazuril in pig excrement by high performance liquid chromatography[J]. Journal of South China Agricultural University, 2021, 42(1): 34-41. DOI: 10.7671/j.issn.1001-411X.202003007 |
To establish a method of high performance liquid chromatography (HPLC) with a photodiode array detector (PDA) for the determination of ponazuril in pig feces and urine.
Urine samples were extracted twice with 0.2%(φ) acetic acetonitrile and dichloromethane. Feces samples were vortex-extracted by acetonitrile and purified by hydrophile-lipophile balance (HLB) solid phase extraction column. The mobile phase was 0.005 mol/L potassium dihydrogen phosphate solution (A)-acetonitrile (B), the mobile phase ratios of V(A)∶V(B) for urine and feces samples were 55∶45 and 56∶44 respectively. The detection wavelength was 255 nm, the column temperature was 35 ℃ and the injection volume was 30 µL.
The detection limit and quantitative limit of ponazuril in urine were 0.02 and 0.05 µg/mL, respectively, which showed a good linear relationship in the range of 0.05−5.00 µg/mL, and the determination coefficients (R2) was 0.999 8. The average recovery rates ranged from 93.49% to 99.16% at three spiked levels of 0.05, 1.00 and 5.00 µg/mL, and the intra-batch and inter-batch relative standard deviations (RSDs) ranged from 0.97% to 7.62%. The detection limit and quantitative limit of ponazuril in feces were 0.10 and 0.25 µg/g, respectively, which showed a good linear relationship within the range of 0.25−100.00 µg/g, and R2 was 0.999 5. The average recovery rates ranged from 89.55% to 95.88% at three spiked levels of 0.25, 25.00 and 100.00 µg/g, and the intra-batch and inter-batch RSDs ranged from 1.76% to 3.63%. The recovery rates of ponazuril in feces and urine were both higher than 89.50%, and the intra-batch and inter-batch RSDs were both lower than 8%.
This method has simple sample pretreatment and sensitive detection, and is suitable for the determination of ponazuril in pig excrement.
[1] |
白成友, 范才良, 文红. 我国猪球虫病及其防制研究概述[J]. 畜牧兽医科技信息, 2012(9): 6-7.
|
[2] |
MITCHELL M A. Ponazuril[J]. Journal of Exotic Pet Medicine, 2008, 17(3): 228-229. doi: 10.1053/j.jepm.2008.05.013
|
[3] |
邱小兵. 妥曲珠利砜对猪球虫病的药效学及安全药理学研究[D]. 南昌: 江西农业大学, 2013.
|
[4] |
王翔林, 王冠楠, 钱琛, 等. HPLC法测定帕那珠利含量[J]. 中国兽药杂志, 2012, 46(8): 35-38.
|
[5] |
The European Medicines Agency. Committee for veterinary medicinal products, toltrazuril, summary report (1): EMEA/MRL/314/97-FINAL[R]. Amsterdam: European Medicines Agency, 1998.
|
[6] |
The European Medicines Agency. Committee for veterinary medicinal products, toltrazuril (extension to pigs), summary report (2): EMEA/MRL/620/99-FINAL[R]. Amsterdam: European Medicines Agency, 1999.
|
[7] |
ZOU M, GUO G, ZHAO Y, et al. Detection, quantifications, and pharmacokinetics of ponazuril in healthy swine[J]. Journal of Veterinary Pharmacology and Therapeutics, 2014, 37(6): 598-602. doi: 10.1111/jvp.12126
|
[8] |
LOVE D, GIBBONS P, FAJT V, et al. Pharmacokinetics of single-dose oral ponazuril in weanling goats[J]. Journal of Veterinary Pharmacology and Therapeutics, 2016, 39(3): 305-308. doi: 10.1111/jvp.12273
|
[9] |
沈佳晨, 霍浩远, 全家兴, 等. HPLC法测定猪血浆中帕托珠利的方法学建立[J]. 中国兽药杂志, 2019, 53(6): 9-13.
|
[10] |
施祖灏, 陆俊贤, 葛庆联, 等. 高效毛细管电泳法同时检测地克珠利和妥曲珠利的含量[J]. 中国兽药杂志, 2008, 42(9): 13-16.
|
[11] |
施祖灏, 朱良强, 卢运站, 等. 鸡组织中地克珠利和妥曲珠利残留HPLC检测方法的建立[J]. 中国兽医学报, 2009, 29(1): 79-81.
|
[12] |
徐颖洁, 韩航如, 郭永刚, 等. 液质联用方法测定鸡血浆中妥曲珠利及其代谢产物[J]. 南京农业大学学报, 2006, 29(1): 127-130.
|
[13] |
林仙军, 陆春波, 包爱情, 等. 高效液相色谱法测定鸡肌肉中地克珠利、妥曲珠利及其代谢物的残留量[J]. 中国兽药杂志, 2015, 49(3): 53-57.
|
[14] |
杨海兰, 姚文旭, 李洒丽, 等. 帕托珠利和妥曲珠利在肉鸡体内残留消除的比较研究[J]. 黑龙江畜牧兽医, 2015(3): 229-232.
|
[15] |
宫小明, 杨丽君, 王洪涛, 等. 液相色谱−高分辨质谱测定动物源性食品中均三嗪类药物残留[J]. 安徽农业科学, 2015, 43(28): 114-117.
|
[16] |
OLSEN J, BJÖRKLUND E, KROGH K A, et al. Development of an analytical methodology for the determination of the antiparasitic drug toltrazuril and its two metabolites in surface water, soil and animal manure[J]. Analytica Chimica Acta, 2012, 755(22): 69-76.
|
[17] |
李红艳, 金燕飞, 黄海智, 等. 高效液相色谱−二极管阵列检测器结合固相萃取法快速测定食品中米酵菌酸残留[J]. 食品科学, 2016, 37(24): 247-251.
|
[18] |
赵莉, 谢显传, 占绣萍, 等. 高效液相色谱−荧光法同时检测蔬菜中阿维菌素、甲氨基阿维菌素苯甲酸盐和伊维菌素的多残留量[J]. 中国农业科学, 2010, 43(16): 3467-3472.
|
[19] |
平华, 李杨, 李冰茹, 等. 基于分散固相萃取−超高效液相色谱串联质谱法同时测定蔬菜中多种除草剂残留的方法[J]. 中国农业科学, 2017, 50(21): 4159-4169.
|
[20] |
祁克宗, 施祖灏, 彭开松, 等. 基质固相分散萃取−高效液相色谱法检测鸡组织中均三嗪类药物残留[J]. 分析化学, 2007, 35(11): 1601-1606.
|
[21] |
范志影, 赵丙超, 刘庆生, 等. 液相色谱−质谱法测定饲料中的3种三嗪类抗球虫药[J]. 现代科学仪器, 2016(5): 97-103.
|
[22] |
杨迪, 宗昕如, 刘杰, 等. 饲料中妥曲珠利高效液相色谱检测方法的建立[J]. 农业与生命科学版, 2014, 35(4): 37-45.
|
[23] |
万巧玲, 王良超, 江珊珊, 等. HLB固相萃取小柱同时萃取水样中10种优先控制有机污染物[J]. 化学研究与应用, 2018, 30(10): 1726-1732.
|
1. |
吕永东. 基于机器深度学习的小麦条播机双变量施肥控制方法. 中国农机装备. 2025(05): 108-111 .
![]() | |
2. |
郑金江. 基于VOSviewer无公害栽培技术的多维分析——发展、应用与新的挑战. 绿色科技. 2024(05): 161-167 .
![]() |