• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
WU Kunzhong, LI Rongsong, CAO Yang, et al. Transcriptome analysis of Drosophila S2 cells infected by Listeria innocua[J]. Journal of South China Agricultural University, 2020, 41(5): 17-26. DOI: 10.7671/j.issn.1001-411X.202001023
Citation: WU Kunzhong, LI Rongsong, CAO Yang, et al. Transcriptome analysis of Drosophila S2 cells infected by Listeria innocua[J]. Journal of South China Agricultural University, 2020, 41(5): 17-26. DOI: 10.7671/j.issn.1001-411X.202001023

Transcriptome analysis of Drosophila S2 cells infected by Listeria innocua

More Information
  • Received Date: January 12, 2020
  • Available Online: May 17, 2023
  • Objective 

    Listeria innocua is a non-pathogenic bacterium from the Listeria genus, which harbors the virulence factors evolved from the same ancestor with the pathogenic bacterium L. monocytogenes. This study aims to investigate the transcriptional variations of host cells after L. innocuainfection, and provide a basis for host regulation and prevention of damage from L. monocytogenes.

    Method 

    We used L. innocua to infect Drosophila melanogaster S2 cells and analyzed the change of gene expression in Drosophila S2 cells by transcriptome sequencing. The differentially expressed genes in Drosophila S2 cells infected by L. innocua was verified by qPCR.

    Result 

    The Toll/Imd signaling pathways were significantly upregulated in Drosophila S2 cells after L. innocua infection for three hours, while the phagosome and Vibrio cholerae infection signaling pathways were significantly downregulated. The antimicrobial peptide genes including DmDef (DmDefensin), DmDro (DmDrosomycin), DmDpt A (DmDptericin A), DmDpt B (DmDptericin B), DmMtk (DmMetchnikowin), DmCec A2 (DmCecropin A2), DmAtt A (DmAttacin A), DmAtt B (DmAttacin B), DmAtt D (DmAttacin D), and DmCec B (DmCecropin B) were significantly induced after L. innocua infection. Among them, the most upregulated gene was DmDef with 9.805 fold change. The qPCR verification results showed that the expressions of DmMtk, DmAtt A, DmDro and DmDef genes were upregulated by 8.180, 7.533, 7.204 and 4.569 fold.

    Conclusion 

    After L. innocua infection, the genes with the most significant change in Drosophila S2 cells are antimicrobial peptide genes. This study offers a comprehensive investigation of gene expression changes in Drosophila S2 cells after L. innocua infection, and provide a reference for revealing the response of host cells evoked by non-pathogenic bacteria as well as interaction studies between bacterial pathogens and hosts.

  • [1]
    李翠云. 单核细胞李斯特菌研究近况[J]. 中国热带医学, 2010, 10(1): 120-122.
    [2]
    蔡雪薛. 单核细胞增生李斯特菌毒力相关基因的筛选鉴定及其功能研究[D]. 扬州: 扬州大学, 2017.
    [3]
    VÁZQUEZ-BOLAND J A, DOMÍNGUEZ-BERNAL G, GONZÁLEZ-ZORN B, et al. Pathogenicity islands and virulence evolution in Listeria[J]. Microbes Infect, 2001, 3(7): 571-584. doi: 10.1016/S1286-4579(01)01413-7
    [4]
    GAILLARD J L, BERCHE P, SANSONETTI P. Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes[J]. Infect Immun, 1986, 52(1): 50-55. doi: 10.1128/IAI.52.1.50-55.1986
    [5]
    陈健舜, 江玲丽, 方维焕. 李斯特菌毒力因子及其进化[J]. 微生物学报, 2007(4): 738-742. doi: 10.3321/j.issn:0001-6209.2007.04.035
    [6]
    ORSI R H, WIEDMANN M. Characteristics and distribution of Listeriaspp., including Listeria species newly described since 2009[J]. Appl Microbiol Biotechnol, 2016, 100(12): 5273-5287. doi: 10.1007/s00253-016-7552-2
    [7]
    JUNTTILA J R, NIEMELÄ S I, HIRN J. Minimum growth temperatures of Listeria monocytogenes and non‐haemolytic Listeria[J]. J Appl Bacteriol, 1988, 65(4): 321-327. doi: 10.1111/j.1365-2672.1988.tb01898.x
    [8]
    王旭. 基于比较基因组学和转录组学技术揭示单增李斯特菌毒力因子的研究[D]. 上海: 上海海洋大学, 2016.
    [9]
    杜秀嫒. 李斯特菌致病性的研究及部分基因的功能分析[D]. 兰州: 甘肃农业大学, 2018.
    [10]
    SCALLAN E, HOEKSTRA R M, ANGULO F J, et al. Foodborne illness acquired in the United States: Major pathogens[J]. Emerg Infect Dis, 2011, 17(1): 7-15. doi: 10.3201/eid1701.P11101
    [11]
    LI W, BAI L, FU P, et al. The epidemiology of Listeria monocytogenes in China[J]. Foodborne Pathog Dis, 2018, 15(8): 459-466. doi: 10.1089/fpd.2017.2409
    [12]
    郎需龙, 王兴龙. 李斯特菌毒力因子及其调控机制的研究进展[J]. 中国畜牧兽医, 2011, 38(3): 195-198.
    [13]
    ALVAREZ-DOMINGUEZ C, ROBERTS R, STAHL P D. Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome[J]. J Cell Sci, 1997, 110(Pt 6): 731-743.
    [14]
    MARQUIS H, GOLDFINE H, PORTNOY D A. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes[J]. J Cell Biol, 1997, 137(6): 1381-1392. doi: 10.1083/jcb.137.6.1381
    [15]
    PIZARRO-CERDÁ J, COSSART P. Subversion of cellular functions by Listeria monocytogenes[J]. J Pathol, 2006, 208(2): 215-223. doi: 10.1002/path.1888
    [16]
    KOCKS C, GOUIN E, TABOURET M, et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein[J]. Cell, 1992, 68(3): 521-531.
    [17]
    COSSART P, TOLEDO-ARANA A. Listeria monocytogenes, a unique model in infection biology: An overview[J]. Microbes Infect, 2008, 10(9): 1041-1050. doi: 10.1016/j.micinf.2008.07.043
    [18]
    CHONG R, SWISS R, BRIONES G, et al. Regulatory mimicry in Listeria monocytogenes actin-based motility[J]. Cell Host Microbe, 2009, 6(3): 268-278. doi: 10.1016/j.chom.2009.08.006
    [19]
    DEN BAKKER H C, CUMMINGS C A, FERREIRA V, et al. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss[J]. BMC Genomics, 2010, 11(1): 688. doi: 10.1186/1471-2164-11-688
    [20]
    MILILLO S R, FRIEDLY E C, SALDIVAR J C, et al. A Review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes[J]. Crit Rev Food Sci Nutr, 2012, 52(8): 712-725. doi: 10.1080/10408398.2010.507909
    [21]
    JOHNSON J, JINNEMAN K, STELMA G, et al. Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes[J]. Appl Environ Microbiol, 2004, 7(7): 4256-4266.
    [22]
    MOURA A, DISSON O, LAVINA M, et al. Atypical hemolytic Listeria innocua isolates are virulent, albeit less than Listeria monocytogenes[J]. Infect Immun, 2019, 87(4): e00758-18.
    [23]
    NYHAN L, JOHNSON N, BEGLEY M, et al. Comparison of predicted and impedance determined growth of Listeria innocua in complex food matrices[J]. Food Microbiol, 2020, 87: 103381. doi: 10.1016/j.fm.2019.103381
    [24]
    SORRENTINO E, TREMONTE P, SUCCI M, et al. Detection of antilisterial activity of 3-phenyllactic acid using Listeria innocua as a model[J]. Front Microbiol, 2018, 9: 1373.
    [25]
    TREMONTE P, SUCCI M, COPPOLA R, et al. Homology-based modeling of universal stress protein from Listeria innocua up-regulated under acid stress conditions[J]. Front Microbiol, 2016, 7: 1998.
    [26]
    YILDIRIM Z, YERLIKAYA S, ÖNCÜL N, et al. Inhibitory effect of lactococcin BZ against Listeria innocua and indigenous microbiota of fresh beef[J]. Food Technol Biotechnol, 2016, 54(3): 317-323.
    [27]
    LIU D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen[J]. J Med Microbiol, 2006, 55(6): 645-659. doi: 10.1099/jmm.0.46495-0
    [28]
    刘甜, 罗开珺. 果蝇Toll和Imd信号通路中的功能结构域[J]. 环境昆虫学报, 2011, 33(3): 388-395. doi: 10.3969/j.issn.1674-0858.2011.03.015
    [29]
    STUART L M, EZEKOWITZ R A. Phagocytosis and comparative innate immunity: Learning on the fly[J]. Nat Rev Immunol, 2008, 8(2): 131-141. doi: 10.1038/nri2240
    [30]
    TANJI T, HU X, WEBER A N R, et al. Toll and Imd pathways synergistically activate an innate immune response in Drosophila melanogaster[J]. Mol Cell Biol, 2007, 27(12): 4578-4588. doi: 10.1128/MCB.01814-06
    [31]
    VODOVAR N, VINALS M, LIEHL P, et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species[J]. Proc Natl Acad Sci USA, 2005, 102(32): 11414-11419. doi: 10.1073/pnas.0502240102
    [32]
    TZOU P, REICHHART J M, LEMAITRE B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants[J]. Proc Natl Acad Sci USA, 2002, 99(4): 2152-2157. doi: 10.1073/pnas.042411999
    [33]
    GOTTAR M, GOBERT V, MICHEL T, et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein[J]. Nature, 2002, 416(6881): 640-644.
    [34]
    陈康康, 吕志强. 昆虫肽聚糖识别蛋白研究进展[J]. 昆虫学报, 2014, 57(8): 969-978.
    [35]
    IATSENKO I, KONDO S, MENGIN-LECREULX D, et al. PGRP-SD, an extracellular pattern-recognition receptor, enhances peptidoglycan-mediated activation of the Drosophila Imd pathway[J]. Immunity, 2016, 45(5): 1013-1023. doi: 10.1016/j.immuni.2016.10.029
    [36]
    LEMAITRE B, REICHHART J M, HOFFMANN J A. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms[J]. Proc Natl Acad Sci USA, 1997, 94(26): 14614-14619. doi: 10.1073/pnas.94.26.14614
    [37]
    IMLER J, BULET P. Antimicrobial peptides in Drosophila: Structures, activities and gene regulation[J]. Chem Immunol Allergy, 2005, 86: 86648.
    [38]
    程廷才, 王根洪, 李娟, 等. 昆虫抗菌肽基因表达调控机理[J]. 蚕学通讯, 2004, 24(3): 20-26. doi: 10.3969/j.issn.1006-0561.2004.03.008
    [39]
    HANSON M A, DOSTÁLOVÁ A, CERONI C, et al. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach[J]. eLife, 2019, 8: 44341.
    [40]
    ALLAN A K, DU J, DAVIES S A, et al. Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles[J]. Physiol Genomics, 2005, 22(2): 128-138. doi: 10.1152/physiolgenomics.00233.2004
    [41]
    游海燕, 邓云, 覃文新. V-ATPases的功能及其抑制剂研究进展[J]. 生命科学, 2009, 21(4): 499-503.
    [42]
    HOLLIDAY L S. Vacuolar H+-ATPase: An essential multitasking enzyme in physiology and pathophysiology[J]. New J Sci, 2014, 2014: 1-21.
    [43]
    谭炳乾, 何启盖, 肖军, 等. 单核细胞增多性李斯特菌hlyA基因序列及溶血素活性测定[J]. 中国兽医学报, 2009, 29(2): 161-165.
  • Cited by

    Periodical cited type(19)

    1. 钱卫星,郑东. 动态环境监测系统的设计. 集成电路应用. 2024(03): 186-187 .
    2. 陈雄,罗海波. 碳汇渔业贝类养殖监测管理系统的设计与开发. 闽江学院学报. 2024(05): 51-58 .
    3. 罗潜,吉艺宽,李美娣. 基于STM32和ZigBee的水产养殖水质监测系统设计. 仪器仪表用户. 2023(08): 22-26 .
    4. 杨智玲,程玮. 基于无人机遥感技术的渔业养殖池塘水质监测方法. 太原师范学院学报(自然科学版). 2023(02): 35-40 .
    5. 余钱程,管延敏,黄温赟,韦龙,虞嘉晨. 基于STM32与树莓派的养殖水质监测无人艇系统研究. 渔业现代化. 2023(05): 33-42 .
    6. 林盾,怀晓伟,宁睿. 面向电网基建现场的LoRa通信低功耗组网控制技术的优化设计. 自动化应用. 2023(22): 73-75 .
    7. 杨智玲. 无人机技术在水产养殖作业通信系统中的应用. 长江信息通信. 2022(04): 1-3 .
    8. 孔兵,余梅,乔欣. 基于LoRa无线通信的水产养殖水质监测系统设计. 滨州学院学报. 2022(02): 74-80 .
    9. 任晓亮,施羽露,廖河庭,杨晓曦,钱信宇,郑尧,陈家长. 水产环境污染现状及治理策略. 农学学报. 2022(05): 42-46 .
    10. 闫尉深,刘威,刘家俊,李志达. 基于无线技术的隧道积水监测系统设计. 电子设计工程. 2022(14): 137-141 .
    11. 李阳东,漆林,笪亨融,谢洋洋. 基于物联网的近海岸水质监测平台方案设计. 海岸工程. 2022(03): 268-276 .
    12. 康晋. 基于LoRa无线通信的工业机器人远程监控系统设计. 计算机测量与控制. 2022(09): 119-124+132 .
    13. 肖军. 基于无线通信技术的医院信息管理系统设计. 自动化技术与应用. 2022(11): 107-111 .
    14. 巫鹏航,王锦鹏,朱敬宾,郭来功. 基于STM32与LabVIEW的地下水压水温监测系统设计. 长春师范大学学报. 2021(04): 43-47 .
    15. 覃伟锋,郝文杰,莫胜胜,龙应萍,蔡世媚,范嘉晨. 基于云服务的水产养殖水质监测系统. 电子制作. 2021(10): 30-32 .
    16. 胡颖,徐轶群. 基于窄带物联网通信的海洋水质监测系统设计. 广州航海学院学报. 2021(02): 14-19 .
    17. 谭明,曾海涛,王田. 基于无线通信的换流阀冷却塔温度监测系统设计. 电工技术. 2021(12): 8-9+12 .
    18. 颜瑞,王震,李言浩,李哲敏,李娴. 中国农业智能传感器的应用、问题与发展. 农业大数据学报. 2021(02): 3-15 .
    19. 尹航,廖梓渊,徐龙琴,刘双印,曹亮,郭建军. 基于ECharts的对虾产业数据可视化分析平台设计及实现. 现代农业装备. 2021(04): 7-14 .

    Other cited types(12)

Catalog

    Article views (1818) PDF downloads (2423) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return