• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
CHEN Zhihui, DUAN Hongbing, CAI Xingkui, et al. Distribution characteristics of potato contact stress during the drop impact[J]. Journal of South China Agricultural University, 2020, 41(5): 99-108. DOI: 10.7671/j.issn.1001-411X.202001005
Citation: CHEN Zhihui, DUAN Hongbing, CAI Xingkui, et al. Distribution characteristics of potato contact stress during the drop impact[J]. Journal of South China Agricultural University, 2020, 41(5): 99-108. DOI: 10.7671/j.issn.1001-411X.202001005

Distribution characteristics of potato contact stress during the drop impact

More Information
  • Received Date: January 05, 2020
  • Available Online: May 17, 2023
  • Objective 

    To explore the damage principle of potato under drop impact.

    Method 

    Prescale sensitive film and high speed photogrammetry were used to characterize the contact stress distribution of potato when it collided with five types of materials and dropped from different heights. The relationship between potato damage and contact stress distribution was determined by studying the distribution law of contact stress in potato.

    Result 

    The response surface analysis of combination orthogonal test for potato showed that collision material, dropping height and potato mass had significant influences on the impact compression deformation amount of potato collision. The influence degree in order was collision material>dropping height>potato mass. When colliding with 65Mn steel, the potato had damage at the dropping height of 300 mm. When colliding with plastic ABS, clods, potatoes and nitrile rubber, the potato had damage at the dropping height of 400 mm. At the dropping height of 200−800 mm, the major contact area was under the contact stress of 0.01−0.50 MPa, which played a major role in potato damage. At the dropping height of <300 mm for 65Mn steel and <400 mm for other collision materials, the major contact area was under the contact stress of ≤0.20 MPa. At the dropping height of ≥300 mm for 65Mn steel and ≥400 mm for other collision materials, the major contact area was under the contact stress of (0.20, 0.60] MPa. The critical stress causing damage of potato was 0.20 MPa under drop impact. Dropping height and contact area showed a highly linear positive correlation, with the determination coefficient (R2) above 0.95. Impact force was the product of contact stress and contact area, which had highly linear correlation with impact compression deformation, and R2 was above 0.96.

    Conclusion 

    The constructed linear regression model can accurately predict and evaluate damage of potato under drop impact.

  • [1]
    魏忠彩, 李学强, 张宇帆, 等. 马铃薯全程机械化生产技术与装备研究进展[J]. 农机化研究, 2017, 39(9): 1-6.
    [2]
    MORELLI J K, VAYDA M E. Mechanical wounding of potato tubers induces replication of potato virus S[J]. Physiol Mol Plant P, 1996, 49: 33-47. doi: 10.1006/pmpp.1996.0037
    [3]
    SABBA R P, LULAI E C. Immunocytological comparison of native and wound periderm maturation in potato tuber[J]. Am J Potato Res, 2004, 81(2): 119-124. doi: 10.1007/BF02853609
    [4]
    OLSSON K. The influence of genotype on the effects of impact damage and light exposure on the accumulation of glycoalkaloids in potato tubers[J]. Potato Res, 1986, 29: 1-12. doi: 10.1007/BF02361977
    [5]
    BARITELLE A L, HYDE G M, THORNTON R E. Rapid assessment of potato tuber bruise discoloration potential[C]//ASAE/CSAE Annual International Meeting. Toronto: ASAE/CSAE, 1999.
    [6]
    张建华, 金黎平, 谢开云, 等. 不同基因型马铃薯块茎损伤性状的综合评价[J]. 中国农业科学, 2009, 42(1): 198-203. doi: 10.3864/j.issn.0578-1752.2009.01.024
    [7]
    冯斌. 收获期马铃薯块茎物理特性及损伤机理研究[D]. 兰州: 甘肃农业大学, 2018.
    [8]
    BARITELLE A, HYDE G, THORNTON R E, et al. A classification system for impact-related defects in potato tubers[J]. Am J Potato Res, 2000, 77(3): 143-148. doi: 10.1007/BF02853938
    [9]
    吴永根, 李汉洙. 苹果梨机械损伤的研究[J]. 延边农学院学报, 1993(3): 188-192.
    [10]
    桑永英, 张东兴, 张梅梅. 马铃薯碰撞损伤试验研究及有限元分析[J]. 中国农业大学学报, 2008, 13(1): 81-84. doi: 10.3321/j.issn:1007-4333.2008.01.017
    [11]
    康璟, 李涛, 王蒂, 等. 马铃薯收获中机械损伤的分析与思考[J]. 农业机械, 2013(10): 137-139.
    [12]
    王咏梅, 孙伟, 王关平. 关于马铃薯收获中机械损伤的研究[J]. 安徽农业科学, 2014, 42(9): 2837-2840. doi: 10.3969/j.issn.0517-6611.2014.09.118
    [13]
    李辉, 吴建民, 孙伟, 等. 马铃薯机械化收获损伤机理研究现状及进展[J]. 安徽农业科学, 2016, 44(25): 227-229. doi: 10.3969/j.issn.0517-6611.2016.25.080
    [14]
    魏忠彩, 李学强, 孙传祝, 等. 马铃薯收获与清选分级机械化伤薯因素分析[J]. 中国农业科技导报, 2017, 19(8): 63-70.
    [15]
    冯斌, 孙伟, 石林榕, 等. 收获期马铃薯块茎碰撞恢复系数测定与影响因素分析[J]. 农业工程学报, 2017, 33(13): 50-57. doi: 10.11975/j.issn.1002-6819.2017.13.007
    [16]
    吕金庆, 杨晓涵, 吕伊宁, 等. 马铃薯挖掘机升运分离过程中块茎损伤机理分析与试验[J]. 农业机械学报, 2019,51(1): 1-14.
    [17]
    ITO M, SAKAI K, HATA S, et al. Damage to the surface of the potatoes from collision[J]. TASAE, 1994, 37(5): 1431-1433.
    [18]
    DWELLE R B, STALLKNECHT G F. Rate of internal blackspot bruise development in potato tubers under conditions of elevated temperatures and gas pressures[J]. Am Potato J, 1976, 53(7): 235-245. doi: 10.1007/BF02851850
    [19]
    THOMSON G E, LOPRESTI J P. Size and temperature characteristics of potatoes help predict injury following impact collisions[J]. New Zeal J Crop Hort, 2018, 46(1): 1-17. doi: 10.1080/01140671.2017.1334669
    [20]
    NIKARA S, AHMADI E, NIA A A. Scanning electron microscopy study  of  microstructure damage  and micromechanical behavior of potato tissue by impact during storage[J]. J Food Proc Eng, 2018, 41(6). doi: 10.1111/jfpe.12831.
    [21]
    卢立新, 王志伟. 苹果跌落冲击力学特性研究[J]. 农业工程学报, 2007(2): 254-258. doi: 10.3321/j.issn:1002-6819.2007.02.049
    [22]
    李晓娟, 孙诚, 黄利强, 等. 苹果碰撞损伤规律的研究[J]. 包装工程, 2007(11): 44-46. doi: 10.3969/j.issn.1001-3563.2007.11.016
    [23]
    BRUSEWITZ G H, BARTSCH J A, 吴劲松. 与苹果采摘后损伤有关的碰撞参量[J]. 力学进展, 1993(1): 135-140. doi: 10.6052/1000-0992-1993-1-J1993-012
    [24]
    刘治震. 马铃薯碰撞问题及分选装备关键机构研究[D]. 杭州: 浙江大学, 2016.
    [25]
    卢琦. 马铃薯损伤机理试验研究及联合收获机设计[D]. 杨凌: 西北农林科技大学, 2016.
    [26]
    胡奔. 马铃薯跌落损伤机理与防损伤装置研究[D]. 成都: 西华大学, 2018.
    [27]
    冯斌, 孙伟, 孙步功, 等. 收获期马铃薯块茎跌落冲击特性及损伤规律研究[J]. 振动与冲击, 2019, 38(24): 267-274.
    [28]
    LEWIS R, YOXALL A, MARSHALL M B, et al. Characterising pressure and bruising in apple fruit[J]. Wear, 2008, 264(1): 37-46.
    [29]
    HEROLD B, GEYER M, STUDMAN C J. Fruit contact pressure distributions: Equipment[J]. Compute Electron Agr, 2001, 32(3): 167-179. doi: 10.1016/S0168-1699(01)00160-0
    [30]
    司洪祥, 樊仕才, 徐艳军. 压敏片测量离体颈椎后路钢板固定术后关节突关节内压力的变化[J]. 中国组织工程研究与临床康复, 2007(26): 5125-5128.
    [31]
    BACHUS K N, DEMARCO A L, JUDD K T, et al. Measuring contact area, force, and pressure for bioengineering applications: Using Fuji film and TekScan systems[J]. Med Eng Phys, 2006, 28(5): 483-488. doi: 10.1016/j.medengphy.2005.07.022
    [32]
    LU F, ISHIKAWA Y, KITAZAWA H, et al. Measurement of impact pressure and bruising of apple fruit using pressure-sensitive film technique[J]. J Food Eng, 2010, 96: 614-620. doi: 10.1016/j.jfoodeng.2009.09.009
    [33]
    LU F, ISHIKAWA Y, KITAZAWA H, et al. Impact damage to apple fruits in commercial corrugated fiberboard box packaging evaluated by the pressure-sensitive film technique[J]. J Food Agric Environ, 2010, 8: 218-222.
    [34]
    吴杰, 郭康权, 葛云, 等. 香梨果实跌落碰撞时的接触应力分布特性[J]. 农业工程学报, 2012, 28(1): 250-254. doi: 10.3969/j.issn.1002-6819.2012.01.044
    [35]
    孙慧杰, 吴杰, 冯哲. 香梨跌落碰撞接触应力分布特性及损伤估测[J]. 食品与机械, 2013, 29(6): 183-186.
    [36]
    詹友发, 程炜, 舒俊华, 等. 早熟马铃薯新品种在湖北云梦的种植表现[J]. 中国农技推广, 2019, 35(11): 32-34. doi: 10.3969/j.issn.1002-381X.2019.11.010
    [37]
    鲁文娟, 叶巍, 丁建国, 等. “中薯5号”马铃薯品种特征特性及优质高产栽培技术[J]. 农业科技通讯, 2015(2): 140-141. doi: 10.3969/j.issn.1000-6400.2015.02.054
    [38]
    中国农业机械化科学研究院. 农业机械设计手册(上、下册)[M]. 北京: 中国农业科学技术出版社, 2007: 1074-1084.

Catalog

    Article views (1669) PDF downloads (2997) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return