• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
YU Changgeng, LIU Kai. Navel orange recognition based on wavelet transform and Otsu threshold denoising[J]. Journal of South China Agricultural University, 2020, 41(5): 109-114. DOI: 10.7671/j.issn.1001-411X.201912038
Citation: YU Changgeng, LIU Kai. Navel orange recognition based on wavelet transform and Otsu threshold denoising[J]. Journal of South China Agricultural University, 2020, 41(5): 109-114. DOI: 10.7671/j.issn.1001-411X.201912038

Navel orange recognition based on wavelet transform and Otsu threshold denoising

More Information
  • Received Date: December 29, 2019
  • Available Online: May 17, 2023
  • Objective 

    To solve the existing problems of noise interference and ineffective detection in the target area during navel orange recognition in agricultural environment.

    Method 

    A navel orange recognition method based on wavelet transform and Otsu threshold denoising was proposed. Firstly, we chose a better contrast and established the YCbCr model with color space helpful for image segmentation. Then we designed a navel orange detection algorithm based on Otsu threshold denoising and reduced noise interference in the segmentation region of navel orange. Finally we proposed a circle filling method based on the center of mass to determine the position of navel orange in the image, and the detection result was displayed in the original image.

    Result 

    The recognition rates of cyan and orange navel oranges were 87.10% and 94.18%, respectively. The recognition rates of navel orange were 92.96% and 90.15% respectively under direct light and backlight, and 90.82% and 93.18% respectively under occluded and unoccluded situation. The total recognition rate was 92.07%.

    Conclusion 

    The method has strong environmental adaptability, and is suitable for the identification and processing of navel orange images under different occlusion, light and skin color conditions in agricultural environment.

  • [1]
    郭艾侠, 彭明明, 邢仲璟. 机器视觉技术在荔枝识别与定位研究中的应用[J]. 计算机工程与应用, 2017, 53(17): 218-223. doi: 10.3778/j.issn.1002-8331.1603-0155
    [2]
    陈科尹, 邹湘军, 熊俊涛, 等. 基于视觉显著性改进的水果图像模糊聚类分割算法[J]. 农业工程学报, 2013, 29(6): 157-165.
    [3]
    PENG H, SHAO Y, CHEN K, et al. Research on multi-class fruits recognition based on machine vision and SVM[J]. IFAC PapersOnLine, 2018, 51(17): 817-821.
    [4]
    刘浩洲, 陈礼鹏, 穆龙涛, 等. 基于K-means聚类的猕猴桃花朵识别方法[J]. 农机化研究, 2020, 42(2): 22-26.
    [5]
    WANG D, SONG H, TIE Z, et al. Recognition and localization of occluded apples using K-means clustering algorithm and convex hull theory: A comparison[J]. Multimed Tools Appl, 2016, 75(6): 3177-3198. doi: 10.1007/s11042-014-2429-9
    [6]
    LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]//European conference on computer vision. Berlin: Springer-Verlag, 2016: 21-37.
    [7]
    唐聪, 凌永顺, 郑科栋, 等. 基于深度学习的多视窗SSD目标检测方法[J]. 红外与激光工程, 2018, 47(1): 302-310.
    [8]
    彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162. doi: 10.11975/j.issn.1002-6819.2018.16.020
    [9]
    REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. IEEE J Pattern Anal, 2017, 39(6): 1137-1149.
    [10]
    李林升, 曾平平. 改进深度学习框架Faster-RCNN的苹果目标检测[J]. 机械设计与研究, 2019, 35(5): 24-27.
    [11]
    王佳盛, 陈燕, 曾泽钦, 等. 基于全卷积神经网络的荔枝表皮缺陷提取[J]. 华南农业大学学报, 2018, 39(6): 110-116.
    [12]
    MALIK M H, ZHANG T, LI H, et al. Mature tomato fruit detection algorithm based on improved HSV and watershed algorithm[J]. IFAC PapersOnLine, 2018, 51(17): 431-436. doi: 10.1016/j.ifacol.2018.08.183
    [13]
    FADHEL M, HATEM A, ALKHALISY M, et al. Recognition of the unripe strawberry by using color segmentation techniques[J]. IJET, 2018, 7(4): 3383-3387.
    [14]
    SOLEIMANIZADEH S, MOHAMAD D, SABA T, et al. Recognition of partially occluded objects based on the three different color spaces (RGB, YCbCr, HSV)[J]. 3D Research, 2015, 6(3): 22. doi: 10.1007/s13319-015-0052-9
    [15]
    李月娥, 刘青芳. 小波变换在图像分割中的应用研究(英文)[J]. 山西大学学报(自然科学版), 2009, 32(4): 566-571.
    [16]
    朱庆丰, 张瑞, 朱雯青, 等. 基于小波变换与像元对目标的短波红外图像增强算法[J]. 半导体光电, 2019, 40(5): 688-693.
    [17]
    马天兵, 刘健, 杜菲, 等. 基于改进Otsu方法的振动图像分割研究[J]. 电光与控制, 2019, 26(2): 15-19.
  • Cited by

    Periodical cited type(6)

    1. 李致金,汤佳辉,闫金凤. 基于边缘计算的轻量化识别方法. 计算机工程. 2024(06): 287-295 .
    2. 缪睿,张永林. 基于改进小波模型的样条光顺算法. 机床与液压. 2024(17): 104-110 .
    3. 岳有军,霍晓东,王红君,赵辉. 苹果的动态识别与跟踪算法研究. 农机化研究. 2023(06): 41-46 .
    4. 张烨,肖启阳. 电子通信多径信号强干扰滤波抑制仿真. 计算机仿真. 2023(06): 245-249 .
    5. 陈裕凤,聂斌,詹国平,周冠芮,李欢,何雁. 近红外光谱的数据分析方法研究进展. 江西中医药大学学报. 2022(02): 120-124 .
    6. 熊灵,张卫平,李颖,韩慧玲,杨清跃,张安然. 文化育人视域下中医药文化融入大中小学思政教育一体化建设路径探究. 江西中医药大学学报. 2022(02): 97-100 .

    Other cited types(6)

Catalog

    Article views (1632) PDF downloads (1765) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return