• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
KONG Yali, YE Wei, LI Saini, et al. Expression, purification and characterization of ProL protein in the endophytic fungus Cytospora rhizophorae from Morinda officinalis[J]. Journal of South China Agricultural University, 2020, 41(4): 82-89. DOI: 10.7671/j.issn.1001-411X.201912016
Citation: KONG Yali, YE Wei, LI Saini, et al. Expression, purification and characterization of ProL protein in the endophytic fungus Cytospora rhizophorae from Morinda officinalis[J]. Journal of South China Agricultural University, 2020, 41(4): 82-89. DOI: 10.7671/j.issn.1001-411X.201912016

Expression, purification and characterization of ProL protein in the endophytic fungus Cytospora rhizophorae from Morinda officinalis

More Information
  • Received Date: December 16, 2019
  • Available Online: May 17, 2023
  • Objective 

    To clone the coding sequence of proL gene in the endophytic fungus Cytospora rhizophorae derived from Morinda officinalis, obtain ProL protein by heterologous expression and investigate its physicochemical properties, thereby providing a basis for the subsequent research on biological function of the ProL in the biosynthesis pathway of new bioactive compounds cytorhizins.

    Method 

    The proL gene from C. rhizophorae was amplified by PCR, the proL gene fragment was inserted into the prokaryotic expression vector of pET28a by the homologous recombination method and heterologously expressed in Escherichia coli. The ProL protein was renatured by refolding buffer containing urea with a gradiently decreased concentration, and SDS-PAGE analysis and mass spectrometry sequencing were used to verify the target ProL protein. The bioinformatic methods were employed to analyze the similarity of ProL protein with other related proteins, and predict the structure and function of ProL protein.

    Result 

    The coding sequence of proL gene was cloned, the open reading frame of proL gene is 909 bp in length, which encodes 303 amino acids, the molecular formula of ProL is C1495H2320N424O444S13, the relative molecular weight is 33 754.22, the total number of atoms is 4 696, PI is 5.69, so ProL is an acidic protein. ProL protein was abundantly expressed as inclusion bodies in E.coli, the recombinant ProL was obtained with a purity of 98.9%. Bioinformatics analysis results indicated that ProL protein had the highest amino acid sequence similarity (59.40%) with amidohydrolase 2 from Aspergillus ibericus XP025570169.1. The three-dimensional structure model of ProL protein is composed of eight α-helixes and eight β-folds. The conserved amino acid sequence is located at the position from 207 to 216.

    Conclusions 

    ProL protein belongs to the amidohydrolase superfamily, and is predicted as a novel protein. ProL protein might play a role of hydrolysis in the biosynthesis pathway of highly oxidized benzophenones.

  • [1]
    ROELANDTS R, VANHEE J, BONAMIE A, et al. A survey of ultraviolet absorbers in commercially available sun products[J]. Int J Dermatol, 1983, 22(4): 247-255. doi: 10.1111/j.1365-4362.1983.tb03378.x
    [2]
    郭振宇, 丁著明. 二苯酮类紫外线吸收剂的研究进展[J]. 塑料助剂, 2018(2): 1-5.
    [3]
    李新, 赵平, 严秋旭, 等. 杀菌剂烯酰吗啉的应用及市场概况[J]. 农药, 2011, 50(12): 862-863. doi: 10.3969/j.issn.1006-0413.2011.12.002
    [4]
    KRYSTINA S O, STEFAN T, KOGEL K H et al. Metrafenone: Studies on the mode of action of a novel cereal powdery mildew fungicide[J]. Pest Manag Sci, 2006,62(5):393-401.
    [5]
    冯淑玲, 庄波阳, 王凌. HPLC测定盐酸苯海拉明注射液中二苯甲醇和二苯甲酮含量[J]. 中国现代应用药学, 2013, 30(5): 519-522.
    [6]
    李赛谋, 戚进, 寇俊萍. 来源于植物的天然二苯甲酮类化合物的研究现状[J]. 药学进展, 2012, 36(10): 452-458. doi: 10.3969/j.issn.1001-5094.2012.10.003
    [7]
    SAKUNPAK A, PANICHAYUPAKARANANT P. Antibacterial activity of Thai edible plants against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum antibacterial polyisoprenylated benzophenone, chamuangone[J]. Food Chem, 2012, 130(4): 826-831. doi: 10.1016/j.foodchem.2011.07.088
    [8]
    FERRAZ C G, RIBEIRO P R, MARQUES E J, et al. Polyprenylated benzophenone derivatives with a novel tetracyclo[8.3.1.03,11.05,10] tetradecane core skeleton from Clusia burlemarxii exhibited cytotoxicity against GL-15 glioblastoma-derived human cell line[J]. Fitoterapia, 2019, 138: 104346. doi: 10.1016/j.fitote.2019.104346
    [9]
    廖振东, 许凤清, 吴德玲, 等. 知母须根中1个新的二苯甲酮类化合物[J]. 中国中药杂志, 2019, 44(7): 1392-1396.
    [10]
    ZHENG C J, LIAO H X, MEI R Q, et al. Two new benzophenones and one new natural amide alkaloid isolated from a mangrove-derived fungus Penicillium citrinum[J]. Nat Prod Res, 2019, 33(8): 1127-1134. doi: 10.1080/14786419.2018.1460832
    [11]
    邢倩. 一株软珊瑚来源真菌Pestalotiopsis sp.氯代二苯甲酮类化合物及其生物活性研究[D].青岛: 中国海洋大学, 2014.
    [12]
    LIU H X, TAN H B, CHEN Y C, et al. Cytorhizins A-D, four highly structure-combined benzophenones from the endophytic fungus Cytospora rhizophorae[J]. Org Lett, 2019, 21(4): 1063-1067. doi: 10.1021/acs.orglett.8b04107
    [13]
    罗成, 齐江矫, 王元元, 等. 利用重叠延伸PCR构建红色荧光蛋白布鲁氏菌表达载体[J]. 中国畜牧兽医, 2018, 45(9): 2394-2400.
    [14]
    赵逸群. 荧光假单胞菌超氧化物歧化酶基因的克隆、表达及性质研究[D]. 青岛: 青岛大学, 2018.
    [15]
    LIU H X, TAN H B, LIU Y, et al. Three new highly-oxygenated metabolites from the endophytic fungus Cytospora rhizophorae A761[J]. Fitoterapia, 2017, 117: 1-5. doi: 10.1016/j.fitote.2016.12.005
    [16]
    ZHANG S, MA G, LIU Y, et al. Theoretical study of the hydrolysis mechanism of 2-pyrone-4,6-dicarboxylate (PDC) catalyzed by LigI[J]. J Mol Graph Model, 2015, 61: 21-29. doi: 10.1016/j.jmgm.2015.06.011
    [17]
    HOBBS M E, VETTING M, WILLIAMS H J, et al. Discovery of an L-fucono-1,5-lactonase from cog3618 of the amidohydrolase superfamily[J]. Biochemistry, 2013, 52(1): 239-253. doi: 10.1021/bi3015554
    [18]
    MARUYAMA K, SHIBAYAMA T, ICHIKAWA A, et al. Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1[J]. Biosci Biotechnol Biochem, 2004, 68(7): 1434-1441. doi: 10.1271/bbb.68.1434
    [19]
    HOBBS M E, MALASHKEVICH V, WILLIAMS H J, et al. Structure and catalytic mechanism of LigI: Insight into the amidohydrolase enzymes of cog3618 and lignin degradation[J]. Biochemistry, 2012, 51(16): 3497-3507. doi: 10.1021/bi300307b

Catalog

    Article views (927) PDF downloads (1422) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return