WANG Weihua, CAI Liliang, GONG Yidan. Research on influencing factors and model assessment of soil thermal conductivity[J]. Journal of South China Agricultural University, 2020, 41(5): 124-132. DOI: 10.7671/j.issn.1001-411X.201912006
    Citation: WANG Weihua, CAI Liliang, GONG Yidan. Research on influencing factors and model assessment of soil thermal conductivity[J]. Journal of South China Agricultural University, 2020, 41(5): 124-132. DOI: 10.7671/j.issn.1001-411X.201912006

    Research on influencing factors and model assessment of soil thermal conductivity

    More Information
    • Received Date: December 04, 2019
    • Available Online: May 17, 2023
    • Objective 

      To comprehensively consider various factors through evaluating prediction models, make full use of each model’s advantages and disadvantages within the scope of applicable conditions, play its advantages, acquire concise, fast and accurate prediction of soil thermal conductivity and realize quantitative research on its complexity degree.

      Method 

      The advantages, disadvantages, application conditions and influencing factors of the previous 16 soil thermal conductivity models are analyzed and summarized. The predicted data of 14 models are compared with their measured data collected from the literature. The model evaluation is realized through linear regression analysis and root mean square error analysis.

      Result 

      Soil thermal conductivity is greatly affected by moisture content and quartz content. The thermal conductivity of quartz is about 7.9 W·m-1·K-1, which is the highest in all soil minerals. The thermal conductivity of soil in humid state is much higher than that in dry state.Under normal temperature condition, the regression coefficients of Wiener model are 0.133 and 2.208, and the decision coefficients are 0.393 and 0.820, which deviates significantly from other models; Geo-Mean model shows the lowest regression coefficient of 0.668 and the highest root mean square error of 0.598, the prediction values deviated significantly from the measured values; The regression coefficients of the models of Zhang et al, Chen and Haigh are 0.994, 0.919, 0.891 respectively, and the root mean square errors are 0.280, 0.315, 0.394 respectively, showing relatively high prediction accuracy.The regression coefficient of the model of Lu et al is 0.850, the determination coefficient is 0.976, the prediction accuracy of soil thermal conductivity is general, while the improved model of Su et al based on model of Lu et al shows the highest regression coefficient of 0.997, the highest determination coefficient of 0.980, showing the best performance.

      Conclusion 

      In the case of soil texture, improved model of Lu et al is recommended. This model can describe the effects of basic parameters of soil physics on soil thermal conductivity in more detail.

    • [1]
      李毅, 邵明安, 王文焰, 等. 质地对土壤热性质的影响研究[J]. 农业工程学报, 2003, 19(4): 62-65. doi: 10.3321/j.issn:1002-6819.2003.04.014
      [2]
      邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006: 160-192.
      [3]
      WIENER O. Abhandl math-phys Kl KoniglSachsischenGes[M]. Leipizig: Klasse. Sachs Akad. Wiss, 1912: 509.
      [4]
      DE VRIES D A. Physics of the plant environment[M]. New York: John Wiley & Sons, 1963: 210-235.
      [5]
      JOHANSEN O. Thermal conductivity of soils[D]. Trondheim, Norway: University of Trondheim, 1975.
      [6]
      TONG F G, JING L R, ZIMMERMAN R W. An effective thermal conductivity model of geological porous medium for coupled thermo-hydro-mechanical systems with multiphase flow[J]. Int J Rock Mech Min Sci, 2009, 46(8): 1358-1369. doi: 10.1016/j.ijrmms.2009.04.010
      [7]
      HAIGH S K. Thermal conductivity of sands[J]. Geotechnique, 2012, 62(7): 617-625. doi: 10.1680/geot.11.P.043
      [8]
      KERSTEN M S. Laboratory research for the determination of the thermal properties of soils[D]. Minneapolis: Minnesota University, 1949.
      [9]
      COTE J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Can Geotech J, 2005, 42(2): 443-458. doi: 10.1139/t04-106
      [10]
      ZHANG N. Development and validation of TDR based sensors for thermal conductivity and soil suction measurements[D]. Arlington: University of Texas at Arlington, 2015.
      [11]
      ZHANG N, YU X B, PRADHAN A, et al. Effects of particle size and fines content on thermal conductivity of quartz sands[J]. Transp Res Rec, 2015, 2510(1): 36-43.
      [12]
      ZHANG N, YU X B, PRADHAN A, et al. Thermal conductivity of quartz sands by thermo-TDR probe and model prediction[J]. ASCE J Mater Civ Eng, 2015, 27(12): 50-59.
      [13]
      ZHANG N, YU X B, PRADHAN A, et al. A new generalized soil thermal conductivity model for sand-kaolin clay mixtures using thermo-time domain reflectometry probe test[J]. Acta Geotech, 2017(12): 739-752.
      [14]
      ZHANG N, YU X B, WANG X L. Use of a thermo-TDR probe to measure sand thermal conductivity dryout curves(TCDCs) and model prediction[J]. Int J Heat Mass Transf, 2017, 115: 1054-1064.
      [15]
      BALLAND V, ARP P A. Modeling soil thermal conductivities over a wide range of conditions[J]. J Environ Eng Sci, 2005, 4(6): 549-558. doi: 10.1139/s05-007
      [16]
      LU S, REN T S, GONG Y S,et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Sci Soc Am J, 2007, 71(1): 8-14. doi: 10.2136/sssaj2006.0041
      [17]
      CHEN S X. Thermal conductivity of sands[J]. Heat Mass Transfer, 2008, 44(10): 1241-1246. doi: 10.1007/s00231-007-0357-1
      [18]
      苏李君, 王全九, 王铄, 等. 基于土壤物理基本参数的土壤导热率模型[J]. 农业工程学报, 2016, 32(2): 127-133. doi: 10.11975/j.issn.1002-6819.2016.02.019
      [19]
      DONAZZI F, OCCHINI E, SEPPI A. Soil thermal and hydrological characteristics in designing underground cables[J]. Proc Inst Electr Eng, 1979, 126(6): 506-516.
      [20]
      GANGADHARA RAO M V B B, SINGH D N. A generalized relationship to estimate thermal resistivity of soils[J]. Can Geotech J, 1999, 36(4): 767-773. doi: 10.1139/t99-037
      [21]
      MIDTTǾMME K, ROALDSET E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geosci, 1998, 4(2): 165-172. doi: 10.1144/petgeo.4.2.165
      [22]
      卢奕丽, 张猛, 刘晓娜, 等. 含水量和容重对旱地耕层土壤热导率的影响及预测[J]. 农业工程学报, 2018, 34(18): 146-151. doi: 10.11975/j.issn.1002-6819.2018.18.018
      [23]
      曾召田, 范理云, 莫红艳, 等. 土壤热导率的影响因素实验研究[J]. 太阳能学报, 2018, 39(2): 377-384.
      [24]
      NASIRIAN A, CORTES D D, DAI S. The physical nature of thermal conduction in dry granular media[J]. Géotech Lett, 2015, 5(1): 1-5.
      [25]
      FAROUKI O T. Thermal properties of soils[M]. Hanover(N. H.): US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1981: 81.
      [26]
      YU X B, ZHANG N, PRADHAN A, et al. Thermal conductivity of sand-Kaolin clay mixtures[J]. Environ Geotech, 2016, 3(4): 190-202. doi: 10.1680/jenge.15.00022
      [27]
      OVERDUIN P P, KANE D L, VAN LOON W K P. Measuring thermal conductivity infreezing and thawing soil using the soil temperature response to heating[J]. Cold Reg Sci Technol, 2006, 45(1): 8-22. doi: 10.1016/j.coldregions.2005.12.003
      [28]
      SMITS K M, SAKAKI T, HOWINGTON S E, et al. Temperature dependence of thermal properties of sands across a wide range of temperatures (30-70 ℃)[J]. Vadose Zone J, 2013, 12(1): 1-8.
      [29]
      CAMPBELL G S, JUNGBAUER J D, BIDLAKE W R, et al. Predicting the effect of temperature on soil thermal conductivity[J]. Soil Sci, 1994, 158(5): 307-313. doi: 10.1097/00010694-199411000-00001
      [30]
      LIU C H, ZHOU D, WU H. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chin J Geotech Eng, 2011, 33(12): 1877-1886.
      [31]
      SMITS K M, SAKAKI T, LIMSUWAT A, et al. Thermal conductivity of sands under varying moisture and porosity in drainage-wetting cycles[J]. Vadose Zone J, 2010, 9(1): 172-180. doi: 10.2136/vzj2009.0095
      [32]
      XU Y S, SUN D A, ZENG Z T, et al. Effect of temperature on thermal conductivity of lateritic clays over a wide temperature range[J]. Int J Heat Mass Transf, 2019, 138: 562-570. doi: 10.1016/j.ijheatmasstransfer.2019.04.077
      [33]
      ZHAO X D, ZHOU G Q, JIANG X. Measurement of thermal conductivity for frozen soil at temperatures close to 0 ℃[J]. Measurement, 2019, 69(3): 504-510.
      [34]
      陆森, 任图生. 不同温度下的土壤热导率模拟[J]. 农业工程学报, 2009, 25(7): 13-18. doi: 10.3969/j.issn.1002-6819.2009.07.003
      [35]
      王志华, 王甜, 王沣浩. 非饱和土壤热导率模型的优化与应用[J]. 制冷学报, 2017, 38(3): 89-95. doi: 10.3969/j.issn.0253-4339.2017.03.089
      [36]
      ZHANG Y J, YU Z W, HUANG R, et al. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chin J Geotech Eng, 2009, 31(2): 213-217.
      [37]
      徐云山, 曾召田, 吕海波, 等. 高温下红黏土热导率的变化规律试验研究[J]. 工程地质学报, 2017, 25(6): 1465-1473.
      [38]
      张恩继, 王霖. 土壤水分运移模拟研究进展[J]. 南方农业学报, 2019, 13(20): 188-190.
      [39]
      LI R, ZHAO L, WU T H, et al. Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai-Tibet Plateau[J]. Agric For Meteorol, 2019, 264: 235-246. doi: 10.1016/j.agrformet.2018.10.011
      [40]
      RUBIO C M, JOSA R, FERRER F. Influence of the hysteretic behaviour on silt loam soil thermal properties[J]. Open J Soil Sci, 2011, 1(3): 77-85. doi: 10.4236/ojss.2011.13011
      [41]
      于明志, 曹西忠, 王善明, 等. 水分含量对土壤导热系数的影响及机理[J]. 山东建筑大学学报, 2012, 27(2): 152-154. doi: 10.3969/j.issn.1673-7644.2012.02.005
      [42]
      王卫华, 李建波, 王铄, 等. 土壤热特性参数空间变异性与拟合方法研究[J]. 农业机械学报, 2015, 46(4): 120-125. doi: 10.6041/j.issn.1000-1298.2015.04.018
      [43]
      MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. New York: Wiley, 2005: 83-108.
    • Related Articles

      [1]CHEN Wei, YUAN Wenjing, GUAN Xue, HU Qiongbo. Biodiversity of Isaria in soil and its activity against Phyllotreta striolata[J]. Journal of South China Agricultural University, 2021, 42(4): 75-82. DOI: 10.7671/j.issn.1001-411X.202012012
      [2]ZHAO Hui, XU Di. Antifeedant activities of podophyllotoxin and 4′-demethylpodophyotoxin against the adult of striped flea beetles,Phyllotreta striolata[J]. Journal of South China Agricultural University, 2014, 35(4): 67-70. DOI: 10.7671/j.issn.1001-411X.2014.04.013
      [3]HE Hua-liang, BIN Shu-ying, LIAO Hong-zhi, WU Zhong-zhen, LIN Jin-tian. Sequencing and Expression Profile of the Gene Encoding Lipoate Protein Ligase in Phyllotreta striolata[J]. Journal of South China Agricultural University, 2012, 33(3): 351-355. DOI: 10.7671/j.issn.1001-411X.2012.03.016
      [4]SONG Yan-xia, DONG Yi-zhi, ZHANG Mao-xin. Studies on the Influence of Phyllotreta striolata on the Value Loss of Brassica campestrist and the Economic Thresholds[J]. Journal of South China Agricultural University, 2011, 32(1): 53-56. DOI: 10.7671/j.issn.1001-411X.2011.01.012
      [5]ZHANG Mao-xin,LING Ring,LIANG Guang-wen. Effects of host plants on the fitness and the population dynamics of Phyllotreta stiolata[J]. Journal of South China Agricultural University, 2004, 25(3): 64-66. DOI: 10.7671/j.issn.1001-411X.2004.03.018
      [6]The Influence of Non-Host Plant Volatiles on Olfactory, Feeding and Oviposition Behavior of Phyllotreta striolata Fabricius[J]. Journal of South China Agricultural University, 2003, 24(2): 38-40. DOI: 10.7671/j.issn.1001-411X.2003.02.011
      [7]ZHANG Mao-xin,LIANG Guang-wen. The Influence of Host Plants on the Experimental Population of Striped Flea Beetle [Phyllotreta striolata (F.)][J]. Journal of South China Agricultural University, 2000, (3): 25-28. DOI: 10.7671/j.issn.1001-411X.2000.03.007
      [8]HOU You-ming,PANG Xiong-fei,LIANG Guang-wen,SHEN Shu-ping. Study on the Control Effect of the Soil Treatment on the Population of Striped Flea Beetle [Plyllotreta striolata (F.)][J]. Journal of South China Agricultural University, 2000, (3): 21-24. DOI: 10.7671/j.issn.1001-411X.2000.03.006
      [9]ZHANG Mao-xin,LIANG Guang-wen,PANG Xiong-fei. The Construction and Analysis of Natural Population Life Table of Phyllotreta striolata (Fabricius)(Cleoptera: Chrysomelidea)[J]. Journal of South China Agricultural University, 2000, (2): 21-24. DOI: 10.7671/j.issn.1001-411X.2000.02.007
      [10]Wei Hongyi Wang Guohan Pang Xiongfei. INFECTIVITY OF THE NEMATODE, Steinernema jeltiae, TO THE STRIPED FLEA BEETLE, Phyllotreta striolata[J]. Journal of South China Agricultural University, 1992, (1): 26-29.
    • Cited by

      Periodical cited type(10)

      1. 何玉,周晨莉,张恒嘉. 水氮互作对土壤有机碳、微生物及酶活性的影响研究述评. 水利规划与设计. 2025(03): 97-100+106 .
      2. 秦钧,骆洪义,贾国燏,褚旭,宋久洋,胡华林. 聚乙烯微塑料对土壤的影响及综合生物标志物响应指数. 山东化工. 2025(03): 12-18 .
      3. 赵俊波,胡兵辉. 水肥调控对茶树土壤酶及土壤养分的影响. 山西农业大学学报(自然科学版). 2024(02): 130-140 .
      4. 梁榕,何娇,孙飞虎,张瑞芳,王鑫鑫. 聚乙烯微塑料对土壤养分和酶活性的影响. 环境科学. 2024(06): 3679-3687 .
      5. 王颜玉,王文定,郑梦瑶,欧行奇,郑会芳. 施氮和灌溉处理对麦田土壤有机碳组分及酶活性的影响. 环境工程技术学报. 2024(05): 1419-1426 .
      6. 朱琪,史中兴,寇燕燕,刘斌,陈亮,栾倩倩. 原位工程化根治技术和增施生物有机肥对盐碱地土壤酶活性及甜瓜产量、品质的影响. 中国瓜菜. 2023(03): 77-84 .
      7. 赵朔. 水肥一体化模式对马铃薯干物质积累及水分利用效率的影响. 基层农技推广. 2023(05): 34-37 .
      8. 郝海波,许文霞,侯振安. 水氮耦合对滴灌棉田土壤有机碳组分及酶活性的影响. 植物营养与肥料学报. 2023(05): 860-875 .
      9. 吕江艳,龙鹏宇,罗维钢,李伏生,农梦玲. 甘蔗节水高产和蔗田氧化亚氮减排的滴灌施肥模式. 节水灌溉. 2023(12): 1-8 .
      10. 关追追,卢奇锋,陈动,邱权,苏艳,李吉跃,何茜. 施肥方式对幼龄楸树非结构性碳器官分配和生长季动态的影响. 西北植物学报. 2022(08): 1355-1362 .

      Other cited types(9)

    Catalog

      Article views (1692) PDF downloads (3592) Cited by(19)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return