Citation: | XU Hanhong, WANG Jiali, WEI Jiaqi, et al. Insect population genetic regulation and reproductive characteristic interference and their prospects on controlling Spodoptera frugiperda[J]. Journal of South China Agricultural University, 2020, 41(1): 1-8. DOI: 10.7671/j.issn.1001-411X.201910031 |
Spodoptera frugiperda is one of the top ten pests in the world, its invasion and damage pose a major threat to agricultural production in China. There are a wide range of hosts for S. frugiperda, and it has been reported to be resistant to a variety of chemical agents and transgenic Bt corn. With increasing resistance to pesticides, the demand for new control methods is becoming more and more necessary. The population genetic control techniques and the methods of disturbing reproductive characteristics of insects were reviewed, including the sex-chain balanced lethal system, building a hybrid infertility balanced lethal line, controlling insect sex, interfering the key genes for insect growth and development and adjusting the proportion of sex pheromone, etc. Based on the reproductive isolation phenomenon of hybrid infertility and mating disorder of two strains (rice & corn) of S. frugiperda, we explored the application prospects of population genetic regulation and reproductive characteristic interference in the control of S. frugiperda. Taking insect reproduction as the entry point, it provides a theoretical basis for the application of insect sterility technology for controlling S. frugiperda.
[1] |
CRUZ I, TURPIN F T. Yield impact of larval infestations of the fall armyworm (Lepidoptera: Noctuidae) to midwhorl growth stage of corn[J]. J Econ Entomol, 1983, 76(5): 1052-1054. doi: 10.1093/jee/76.5.1052
|
[2] |
SPARKS A N. A review of the biology of the fall armyworm[J]. Fla Entomol, 1979, 2(62): 82-87.
|
[3] |
CRUZI D D B. Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm [Spodoptera frugiperda(Smith)(Lepidoptera: Noctuidae)] larvae in maize[J]. Int J Pest Manage, 2012, 1(58): 83-90.
|
[4] |
江幸福, 张蕾, 程云霞, 等. 草地贪夜蛾迁飞行为与监测技术研究进展[J]. 植物保护, 2019, 45(1): 12-18.
|
[5] |
张蕊.多数地区“见虫未见灾”, 草地贪夜蛾对我国玉米主产区威胁全面解除, 下一步防治任务仍艰巨[R/OL]. (2019-09-17). https://m.nbd.com.cn/articles/2019-09-17/1372416.html.
|
[6] |
全国农业技术推广服务中心.植物病虫情报第26期2019年下半年玉米病虫害发生趋势预报[EB/OL].(2019-07-26).https://www.natesc.org.cn/Html/2019_07_26/28092_151760_2019_07_26_459392.html.
|
[7] |
PRASANNA B M, HUESING J E, EDDY R, et al. Fall armyworm in Africa: A guide for integrated pest management[M]. Tanzania: USAID, 2018.
|
[8] |
KNIPLING E F. Possibilities of insect control or eradication through the use of sexually sterile males[J]. J Econ Entomol, 1955, 48(4): 459-462. doi: 10.1093/jee/48.4.459
|
[9] |
SEREBROVSKII A S. On the possibility of a new method for the control of insect pests[J]. Zoologicheskill Zhurnal, 1969, 19: 618-680.
|
[10] |
曾保胜, 许军, 陈树清, 等. 昆虫种群的遗传调控[J]. 中国科学: 生命科学, 2013, 43(12): 1098-1104.
|
[11] |
HORN C, WIMMER E A. A transgene-based, embryo-specific lethality system for insect pest management[J]. Nat Biotechnol, 2003, 21(1): 64-70. doi: 10.1038/nbt769
|
[12] |
BLACKIV W C, ALPHEY L, JAMES A A. Why RIDL is not SIT[J]. Trends Parasitol, 2011, 27(8): 362-370. doi: 10.1016/j.pt.2011.04.004
|
[13] |
DYCK V A, GRAHAM S H, BLOEM K A. Implementation of the sterile insect release programme to eradicate the codling moth, Cydia pomonella (L.) (Lepidoptera: Olethreutidae), in British Columbia, Canada[C]// IAEA.Management of insect pests: Nuclear and related molecular and genetic techniques. Vienna: IUEA, 1992: 285-297.
|
[14] |
VREYSEN M J B, CARPENTER J E, MAREC F. Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus) (Lepidoptera Tortricidae) to facilitate expansion of field application[J]. J Appl Entomol, 2010, 134(3): 165-181. doi: 10.1111/j.1439-0418.2009.01430.x
|
[15] |
朱军. 遗传学[M]. 2版. 北京: 中国农业出版社, 2001.
|
[16] |
STRUNNIKOV V. Sex control in silkworms[J]. Nature, 1975, 5504(255): 111-113.
|
[17] |
大沼昭夫. 蚕の食性突然変異に関する研究 (第 2 部) 第 12 報食性変異遺伝子 (Nps) の第 3 連関群における座位[J]. 蚕研彙報, 1989, 37: 15-22.
|
[18] |
STRUNNIKOV V A. On the prospects of using balanced sex-linked lethals for insect pest control[J]. Theor Appl Genet, 1979, 55(1): 17-21. doi: 10.1007/BF00282971
|
[19] |
STRUNNIKOV V A. Artificial sex control in the silkworm (Bombyx mori): 1: The origination of sex labeled silkworm strain[M]. Genetika: Academia Nauk (USSR), 1969: 52-71.
|
[20] |
何克荣, 祝新荣, 黄健辉. 家蚕性连锁平衡致死系性别控制基因转移方法研究[J]. 中国农业科学, 2002, 35(2): 213-217. doi: 10.3321/j.issn:0578-1752.2002.02.019
|
[21] |
WARD L. The genetics of curly wing in Drosophila: Another case of balanced lethal factors[J]. Genetics, 1923, 8(3): 276-300.
|
[22] |
清久正夫佃律子. 人工不妊昆虫の生態に関する研究[J]. 日本応用動物昆虫学会誌, 1969, 2(13): 61-69.
|
[23] |
PEREZ D E, WU C I. Further characterization of the Odysseus locus of hybrid sterility in Drosophila: One gene is not enough[J]. Genetics, 1995, 140(1): 201-206.
|
[24] |
禾本. 澳大利亚:引入昆虫不育技术对抗果蝇[J]. 中国果业信息, 2015, 32(10): 34.
|
[25] |
HEINRICH J C, SCOTT M J. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program[J]. Proc Natl Acad Sci USA, 2000, 97(15): 8229-8232. doi: 10.1073/pnas.140142697
|
[26] |
THOMAS D D, DONNELLY C A, WOOD R J, et al. Insect population control using a dominant, repressible, lethal genetic system[J]. Science, 2000, 287(5462): 2474-2476. doi: 10.1126/science.287.5462.2474
|
[27] |
PASHLEY D P, MARTIN J A. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae)[J]. Ann Entomol Soc Am, 1987, 80(6): 731-733. doi: 10.1093/aesa/80.6.731
|
[28] |
VELÁSQUEZ-VÉLEZ M I, SALDAMANDO-BENJUMEA C I, RIOS-DIEZ J D. Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in corn and rice fields from Central Colombia[J]. Ann Entomol Soc Am, 2011, 104(4): 826-833. doi: 10.1603/AN10164
|
[29] |
NAGOSHI R N, MEAGHER R L. Tandem-repeat sequence in fall armyworm (Lepidoptera: Noctuidae) host strains[J]. Ann Entomol Soc Am, 2003, 96(3): 329-335. doi: 10.1603/0013-8746(2003)096[0329:FTSIFA]2.0.CO;2
|
[30] |
GROOT A T, MARR M, SCHÖFL G, et al. Host strain specific sex pheromone variation in Spodoptera frugiperda[J]. Front Zool, 2008, 20(5): 1-13.
|
[31] |
HALDANE M.A. Sex ratio and unisexual sterility in hybrid animals[J]. J Genet, 1922, 12(2): 101-109. doi: 10.1007/BF02983075
|
[32] |
KOST S, HECKEL D G, YOSHIDO A. AZ‐linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda[J]. Evolution, 2016, 70(6): 1418-1427. doi: 10.1111/evo.12940
|
[33] |
LYNCH M, FORCE A G. The origin of interspecific genomic incompatibility via gene duplication[J]. Am Nat, 2000, 156(6): 590-605. doi: 10.1086/316992
|
[34] |
MASLY J P, JONES C D, NOOR M A F. Gene transposition as a cause of hybrid sterility in Drosophila[J]. Science, 2006, 5792(313): 1448-1450.
|
[35] |
WIGGLESWORTH V B. The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus[J]. Quart J Micr Sci, 1936, 79: 91-119.
|
[36] |
WYATT G R, DAVEY K G. Cellular and molecular actions of juvenile hormone: 2: Roles of juvenile hormone in adult insects[J]. Adv Insect Physiol, 1996, 26: 1-155. doi: 10.1016/S0065-2806(08)60030-2
|
[37] |
叶恭银, 龚和. 保幼激素和蜕皮激素对天蚕卵巢发育的影响[J]. 浙江农业大学学报, 1999, 25(3): 276-280.
|
[38] |
RAMASWAMY S B, SHU S, PARK Y I, et al. Dynamics of juvenile hormone-mediated gonadotropism in the Lepidoptera[J]. Arch Insect Biochem Physiol, 1997, 35(4): 539.
|
[39] |
RAMASWAMY S B, MBATABATA G N, COHEN N E. Necessity of juvenile hormone for choriogenesis in the moth, Heliothis virescens (Noctuidae)[J]. Invertebr Reprod Dev, 1990, 17(1): 57-63. doi: 10.1080/07924259.1990.9672088
|
[40] |
REZA A M S, KANAMORI Y, SHINODA T, et al. Hormonal control of a metamorphosis specific transcriptional factor broad-complex in silkworm[J]. Comp Biochem Phys B, 2004, 139(4): 753-761. doi: 10.1016/j.cbpc.2004.09.009
|
[41] |
PARTHASARATHY R, SUN Z, BAI H, et al. Juvenile hormone regulation of vitellogenin synthesis in the red flour beetle, Tribolium castaneum[J]. Insect Biochem Molec, 2010, 40(5): 405-414. doi: 10.1016/j.ibmb.2010.03.006
|
[42] |
DAVIES E L, LIM J G Y, JOO W J, et al. The transcriptional regulator lola is required for stem cell maintenance and germ cell differentiation in the Drosophila testis[J]. Dev Biol, 2013, 373(2): 310-321. doi: 10.1016/j.ydbio.2012.11.004
|
[43] |
SARTAIN C V, CUI J, MEISEL R P, et al. The poly (A) polymerase GLD2 is required for spermatogenesis in Drosophila melanogaster[J]. Development, 2011, 138(8): 1619-1629. doi: 10.1242/dev.059618
|
[44] |
FATIMA R. Drosophila Dynein intermediate chain gene, Dic61B, is required for spermatogenesis[J/OL]. PLoS One, 2011, 6(12): e27822. [2019-10-08]. https://doi.org/10.1371/journal.pone.0027822.
|
[45] |
XU S, HAFER N, AGUNWAMBA B, et al. The CPEB protein Orb2 has multiple functions during spermatogenesis in Drosophila melanogaster[J/OL]. PLoS Genetics, 2012, 8(11): e1003079. [2019-10-08]. https://doi.org/10.1371/journal.pgen.1003079.
|
[46] |
WHITE-COOPER H, LEROY D, MACQUEEN A, et al. Transcription of meiotic cell cycle and terminal differentiation genes depends on a conserved chromatin associated protein, whose nuclear localisation is regulated[J]. Development, 2000, 127(24): 5463-5473.
|
[47] |
TIWARI A K, ROY J K. Rab11 is essential for fertility in Drosophila[J]. Cell Biol Int, 2008, 32(9): 1158-1168. doi: 10.1016/j.cellbi.2008.04.002
|
[48] |
KIMURA S. The Nap family proteins, CG5017/Hanabi and Nap1, are essential for Drosophila spermiogenesis[J]. FEBS Letters, 2013, 587(7): 922-929. doi: 10.1016/j.febslet.2013.02.019
|
[49] |
TOBBACK J, BOERJAN B, VANDERSMISSEN H P, et al. Male reproduction is affected by RNA interference of period and timeless in the desert locust Schistocerca gregaria[J]. Insect Biochem Mol Biol, 2012, 42: 109-115. doi: 10.1016/j.ibmb.2011.11.003
|
[50] |
LIM C, TARAYRAH L, CHEN X. Transcriptional regulation during Drosophila spermatogenesis[J]. Spermatogenesis, 2012, 2(3): 158-166. doi: 10.4161/spmg.21775
|
[51] |
CHENG Y J, FANG S, TSAUR S C, et al. Reduction of germ cells in the Odysseus null mutant causes male fertility defect in Drosophila melanogaster[J]. Genes Genet Syst, 2012, 87(4): 273-276. doi: 10.1266/ggs.87.273
|
[52] |
WHITE-COOPER H. Molecular mechanisms of gene regulation during Drosophila spermatogenesis[J]. Reproduction, 2010, 139(1): 11. doi: 10.1530/REP-09-0083
|
[53] |
XU J J, RAMAN C, ZHU F, et al. Identification of nuclear receptors involved in regulation of male reproduction in the red flour beetle, Tribolium castaneum[J]. J Insect Physiol, 2012, 58: 710-717. doi: 10.1016/j.jinsphys.2012.02.006
|
[54] |
DONG Y C. Bactrocera dorsalis male sterilization by targeted RNA interference of spermatogenesis: Empowering sterile insect technique programs[J]. Sci Rep, 2016, 6: 35750. doi: 10.1038/srep35750
|
[55] |
ZHENG X, ZHANG D, LI Y, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes[J]. Nature, 2019, 7767(572): 56-61.
|
[56] |
HALL A B, PAPATHANOS P A, SHARMA A, et al. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes[J]. Proc Natl Acad Sci USA, 2016, 113(15): 2114-2123. doi: 10.1073/pnas.1525164113
|
[57] |
PERCY-CUNNINGHAM J E, MACDONALD J A. Biology and ultrastructure of sex pheromone–producing glands[M]// Elsevier. Pheromone biochemistry. Academic Press, 1987: 27-75.
|
[58] |
RAINA A K, WERGIN W P, MURPHY C A, et al. Structural organization of the sex pheromone gland in Helicoverpa zea in relation to pheromone production and release[J]. Arthropod Struct Dev, 2000, 29(4): 343-353. doi: 10.1016/S1467-8039(01)00014-7
|
[59] |
王香萍, 张钟宁. 延迟交配对昆虫生殖行为的影响以及与性信息素防治害虫的关系[J]. 昆虫知识, 2004, 41(4): 295-298.
|
[60] |
MARTINEZ V J, SAAR E. Statistics of the galaxy distribution[M]. Chapman and Hall/CRC, 2001:785-792..
|
[61] |
LEATHER S R, BURNAND A C. Factors affecting life-history parameters of the pine beauty moth, Panolis flammea (D&S): The hidden costs of reproduction[J]. Funct Ecol, 1987(1): 331-338. doi: 10.2307/2389789
|
[62] |
KIM Y J, NACHMAN R J, AIMANOVA K, et al. The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: Identification, functional expression, and structure–activity relationships of ligand analogs[J]. Peptides, 2008, 29(2): 268-275. doi: 10.1016/j.peptides.2007.12.001
|
[63] |
SEKUL A A, SPARKS A N. Sex pheromone of the fall armyworm moth: Isolation, identification, and synthesis[J]. J Econ Entomol, 1967, 60(5): 1270-1272. doi: 10.1093/jee/60.5.1270
|
[64] |
SEKUL A A, SPARKS A N. Sex attractant of the fall armyworm moth[M]. Tifton: Southern Grain Research Laboratory, Agricultural Research Service, US Department of Agriculture, 1976.
|
[65] |
TUMLINSON J H, MITCHELL E R, TEAL P E A, et al. Sex pheromone of fall armyworm, Spodoptera frugiperda (J E Smith)[J]. J Chem Ecol, 1986, 12(9): 1909-1926. doi: 10.1007/BF01041855
|
[66] |
MITCHELL E R, TUMLINSON J H, MCNEIL J N. Field evaluation of commercial pheromone formulations and traps using a more effective sex pheromone blend for the fall armyworm (Lepidoptera: Noctuidae)[J]. J Econ Entomol, 1985, 78(6): 1364-1369. doi: 10.1093/jee/78.6.1364
|
[67] |
DESCOINS C, SILVAIN J F, LALANNE-CASSOU B, et al. Monitoring of crop pests by sexual trapping of males in Guadeloupe and Guyana[J]. Agric Ecosys Environ, 1988, 21(1/2): 53-56.
|
[68] |
ANDRADE R, RODRIGUEZ C, OEHLSCHLAGER A C. Optimization of a pheromone lure for Spodoptera frugiperda (Smith) in Central America[J]. J Brazil Chem Soc, 2000, 11(6): 609-613. doi: 10.1590/S0103-50532000000600009
|
[69] |
BATISTA-PEREIRA L G, STEIN K, DE PAULA A F, et al. Isolation, identification, synthesis, and field evaluation of the sex pheromone of the Brazilian population of Spodoptera frugiperda[J]. J Chemical Ecol, 2006, 32(5): 1085-1099. doi: 10.1007/s10886-006-9048-5
|
[70] |
UNBEHEND M, HÄNNIGER S, MEAGHER R L, et al. Pheromonal divergence between two strains of Spodoptera frugiperda[J]. J Chem Ecol, 2013, 39(3): 364-376. doi: 10.1007/s10886-013-0263-6
|
[71] |
PASHLEY D P, HAMMOND A M, HARDY T N. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera: Noctuidae)[J]. Ann Entomol Soc Am, 1992, 85(4): 400-405. doi: 10.1093/aesa/85.4.400
|
[72] |
SCHÖFL G, HECKEL D G, GROOT A T. Time‐shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: Evidence for differing modes of inheritance[J]. J Evolution Biol, 2009, 22(7): 1447-1459. doi: 10.1111/j.1420-9101.2009.01759.x
|