• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LIN Zicong, REN Xiangning, ZHU Axing, et al. Research on the index system of cultivated land quality grading based on random forest algorithm[J]. Journal of South China Agricultural University, 2020, 41(4): 38-48. DOI: 10.7671/j.issn.1001-411X.201909036
Citation: LIN Zicong, REN Xiangning, ZHU Axing, et al. Research on the index system of cultivated land quality grading based on random forest algorithm[J]. Journal of South China Agricultural University, 2020, 41(4): 38-48. DOI: 10.7671/j.issn.1001-411X.201909036

Research on the index system of cultivated land quality grading based on random forest algorithm

More Information
  • Received Date: September 17, 2019
  • Available Online: May 17, 2023
  • Objective 

    To analyze the difference of cultivated land quality in the study region, optimize the use and layout of cultivated land, and provide a reference for cultivated land protection.

    Method 

    Taking the cultivated land in Gonghe County, Dulan County and Wulan County in Qinghai Province as the research object, the influencing factors of cultivated land quality were collected based on the history and existing literature, and the random forest algorithm and correlation analysis were used to screen the grading indicators and confirm the weight. We calculated the grading index and divided the levels by weighted sum method to get the grading result. We compared the results with the grading results of commonly used Delphi method.

    Result 

    The value of variable importance I obtained by random forest algorithm ranged from 0.03 to 11.94. Correlation analysis showed that the correlation between most influencing factors was not significant, eight of which were significant correlation. The 14 rating indicators under four dimensions were astringed from 30 influencing factors. The main factors influencing the quality of cultivated land in the study area were ecosystem vulnerability, mean precipitation of growing season and annual solar radiation amount, with the weights of 0.11, 0.10 and 0.09, respectively.

    Conclusion 

    Compared with Delphi method, the random forest algorithm has better stability and smaller level of index variation interval, which is more conducive to construct a comparable sequence of cultivated land levels at provincial spatial scale.

  • [1]
    吴大放, 刘艳艳, 董玉祥, 等. 我国耕地数量、质量与空间变化研究综述[J]. 热带地理, 2010, 30(2): 108-113. doi: 10.3969/j.issn.1001-5221.2010.02.002
    [2]
    温良友, 孔祥斌, 辛芸娜, 等. 对耕地质量内涵的再认识[J]. 中国农业大学学报, 2019, 24(3): 156-164.
    [3]
    张超, 乔敏, 郧文聚, 等. 耕地数量、质量、生态三位一体综合监管体系研究[J]. 农业机械学报, 2017, 48(1): 1-6. doi: 10.6041/j.issn.1000-1298.2017.01.001
    [4]
    刘兴华, 孙鹏举, 刘学录. 甘肃省临夏县耕地资源社会保障价值测算[J]. 干旱区资源与环境, 2013, 27(1): 53-57.
    [5]
    中华人民共和国国土资源部. 农用地定级规程: GB/T 28405—2012 [S]. 北京: 中国标准出版社, 2012.
    [6]
    高中贵, 彭补拙. 我国农用地分等定级研究综述[J]. 经济地理, 2004, 24(4): 514-519. doi: 10.3969/j.issn.1000-8462.2004.04.020
    [7]
    金东海, 许皞, 秦文利. 基于分等成果的农用地定级新方法:两层七参数法[J]. 中国土地科学, 2004, 18(6): 34-39. doi: 10.3969/j.issn.1001-8158.2004.06.007
    [8]
    鲁明星, 贺立源, 吴礼树. 我国耕地地力评价研究进展[J]. 生态环境, 2006, 8(4): 866-871.
    [9]
    冯超. 中国谷物产出的"面积− 质量"导向因素分析[J]. 干旱区资源与环境, 2015, 29(8): 7-13.
    [10]
    沈仁芳, 陈美军, 孔祥斌, 等. 耕地质量的概念和评价与管理对策[J]. 土壤学报, 2012, 49(6): 1210-1217. doi: 10.11766/trxb201208130319
    [11]
    张凤荣, 安萍莉, 王军艳, 等. 耕地分等中的土壤质量指标体系与分等方法[J]. 资源科学, 2002, 24(2): 71-75. doi: 10.3321/j.issn:1007-7588.2002.02.014
    [12]
    付国珍, 摆万奇. 耕地质量评价研究进展及发展趋势[J]. 资源科学, 2015, 35(2): 226-236.
    [13]
    盛艳, 姚云峰, 秦富仓, 等. 基于GIS的耕地地力等级划分研究[J]. 干旱区资源与环境, 2014, 28(6): 27-32.
    [14]
    马瑞明, 马仁会, 韩冬梅, 等. 基于多层级指标的省域耕地质量评价体系构建[J]. 农业工程学报, 2018, 34(16): 249-257. doi: 10.11975/j.issn.1002-6819.2018.16.032
    [15]
    杜国明, 刘彦随, 于凤荣, 等. 耕地质量观的演变与再认识[J]. 农业工程学报, 2016, 32(14): 243-249.
    [16]
    马昊翔, 陈长成, 宋英强, 等. 青海省近10年草地植被覆盖动态变化及其驱动因素分析[J]. 水土保持研究, 2018, 25(6): 137-145.
    [17]
    保广裕, 张静, 周丹, 等. 青海省太阳辐射强度时空变化特征分析[J]. 冰川冻土, 2017, 39(3): 563-571.
    [18]
    樊杰. 中国主体功能区划方案[J]. 地理学报, 2015, 70(2): 186-201. doi: 10.11821/dlxb201502002
    [19]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
    [20]
    CHEN X W, LIU M. Prediction of protein-protein interactions using random decision forest framework[J]. Bioinformatics, 2005, 21(24): 4394-4400. doi: 10.1093/bioinformatics/bti721
    [21]
    WARD M M, PAJEVIC S, DREYFUSS J, et al. Short-term prediction of mortality in patients with systemic lupus erythematosus: Classification of outcomes using random forests[J]. Arthrit Rheumat, 2006, 55(1): 74-80. doi: 10.1002/art.21695
    [22]
    OPARIN I, GLEMBEK O, BURGET L, et al. Morphological random forests for language modeling of inflectional languages[C/OL]//IEEE. 2008 IEEE Spoken Language Technology Workshop. Goa: IEEE, 2008: 189-192. [2019-08-25]. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004777872/tab/summary. doi: 10.1109/SLT.2008.4777872.
    [23]
    ZHANG M, ZHANG H, WU P, et al. Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model[J]. Sci Total Environ, 2017, 592: 704-713. doi: 10.1016/j.scitotenv.2017.02.146
    [24]
    方匡南, 朱建平, 谢邦昌. 基于随机森林方法的基金收益率方向预测与交易策略研究[J]. 经济经纬, 2010, 27(2): 61-65. doi: 10.3969/j.issn.1006-1096.2010.02.015
    [25]
    董师师, 黄哲学. 随机森林理论浅析[J]. 集成技术, 2013, 2(1): 1-7.
    [26]
    张雷, 王琳琳, 张旭东, 等. 随机森林算法基本思想及其在生态学中的应用:以云南松分布模拟为例[J]. 生态学报, 2014, 24(3): 650-659.
    [27]
    刘斌, 郭星, 朱宇恩. 基于随机森林模型的土壤重金属源解析:以晋中盆地为例[J]. 干旱区资源与环境, 2019, 33(1): 106-111.
    [28]
    马玥, 姜琦刚, 孟治国, 等. 基于随机森林算法的农耕区土地利用分类研究[J]. 农业机械学报, 2016, 47(1): 297-303. doi: 10.6041/j.issn.1000-1298.2016.01.040
    [29]
    ZHU Z, WOODCOCK C E, ROGAN J, et al. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data[J]. Rem Sens Environ, 2012, 117: 72-82. doi: 10.1016/j.rse.2011.07.020
    [30]
    VAN BEIJMA S, COMBER A, LAMB A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data[J]. Rem Sens Environ, 2014, 149: 118-129. doi: 10.1016/j.rse.2014.04.010
    [31]
    LIAW A, WIENER M. Classification and regression by random forest[J]. R News, 2002, 2(3): 18-22.
    [32]
    刘欢, 吴克宁, 宋文, 等. 耕地质量定级方法改进研究:以农安县为例[J]. 北京师范大学学报(自然科学版), 2018, 54(3): 315-320.
    [33]
    赵璐, 郑新奇, 闫弘文, 等. 基于地统计学的县域农用地定级方法[J]. 农业工程学报, 2008, 24(S1): 99-103.
    [34]
    黄居茂. 青海省农作物生产发展的科学技术探讨[J]. 青海农林科技, 1984, 14(4): 18-26.
    [35]
    朱文江, 康素珍. 柴达木盆地春小麦高产的气候因素[J]. 中国农业科学, 1978, 19(2): 51-56.
    [36]
    张玮, 李江. 青海省菜田盐渍化形成及治理[J]. 青海农技推广, 2015, 20(2): 32-33. doi: 10.3969/j.issn.1008-7117.2015.02.012
  • Cited by

    Periodical cited type(13)

    1. 尹正琳,袁磊,马显光,郭晓洁. 基于熵权和理想点逼近法高原山地耕地质量评价——以云南省华坪县为例. 中国农机化学报. 2025(01): 236-241 .
    2. 刘敏,周健,胡月明,张林,赵清林,秦雅静,陈瑗瑗. 基于XGBoost算法的可恢复耕地宜耕性评价——以湘阴县为例. 农业资源与环境学报. 2024(01): 49-60 .
    3. 梁遐意,谢秉磊,王端宜. 表面纹理特征对路面振动噪声影响研究. 武汉理工大学学报. 2023(05): 57-63 .
    4. 李昊勋,郑宏刚,刘淑霞,赵昊,陈冉. 基于随机森林下的云南省耕地利用效率测算及基尼系数分析. 湖北农业科学. 2023(07): 32-37 .
    5. 姜芸,王军,滕浩,李浩林. 基于TOPSIS模型的典型黑土区耕地质量评价及土壤侵蚀耦合协调分析. 农业工程学报. 2023(12): 82-94 .
    6. 刘一萍,齐共同,刘晓彤,綦春峰,李津博. 基于综合评价法的土地利用监测评价体系研究. 测绘与空间地理信息. 2023(09): 198-201+208 .
    7. 张晨,林艳,周华. 基于数据挖掘方法的玉米和油菜土地适宜性分析——以贵州省遵义市为例. 水土保持通报. 2022(03): 188-198 .
    8. 潘翔,郭璇,吴文辉,肖治庭. 基于RF-Apriori混合算法的关键涉恐特征关联规则挖掘. 火力与指挥控制. 2022(07): 89-96 .
    9. 王丽,周勇,李晴,徐涛,左岍,吴正祥,刘婧仪. 基于随机森林的耕地质量评价智能模型及其应用研究. 土壤学报. 2022(05): 1279-1292 .
    10. 李玮,杨建波,温锦盼,侯宁. 基于GIS的耕地质量评价单元确定方法对比研究. 中国农业信息. 2022(05): 11-23 .
    11. 胡原野,王收军,陈松贵,柳叶,王家伟,田昀艳. 基于随机森林的复坡堤越浪量预测研究. 海洋学报. 2021(10): 106-114 .
    12. 陈宇,周悟,胡月明,谢健文. 耕地质量评价缺失数据填充方法研究. 农业资源与环境学报. 2021(06): 1132-1141 .
    13. 唐宗,周悟,杨颢,谢晓瑜,胡月明. 基于交互效应Logistic回归模型的耕地质量评价方法研究. 生态环境学报. 2020(12): 2394-2403 .

    Other cited types(11)

Catalog

    Article views (1145) PDF downloads (991) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return