HUANG Weihong, CHEN Yongjie, SUN Yankuo, et al. Codon usage bias of H9N2 avian influenza virus complete genomes and its influence factors[J]. Journal of South China Agricultural University, 2020, 41(3): 15-22. DOI: 10.7671/j.issn.1001-411X.201908020
    Citation: HUANG Weihong, CHEN Yongjie, SUN Yankuo, et al. Codon usage bias of H9N2 avian influenza virus complete genomes and its influence factors[J]. Journal of South China Agricultural University, 2020, 41(3): 15-22. DOI: 10.7671/j.issn.1001-411X.201908020

    Codon usage bias of H9N2 avian influenza virus complete genomes and its influence factors

    More Information
    • Received Date: August 13, 2019
    • Available Online: May 17, 2023
    • Objective 

      To study codon usage bias of H9N2 avian influenza virus (AIV) complete genomes and its influence factors.

      Method 

      The complete genomes of Chinese epidemic H9N2 AIV strains from 2010 to 2018 were selected. The characteristics of base composition, optimal codons, influence factors of codon usage bias and adaption to the codon usage patterns of the host were analyzed.

      Result 

      AU content was higher than GC content in the whole genomes of H9N2 AIV. Most of the optimal codons ended with A or U, and the average of effective number of codons (ENC) was 52.86, suggesting that codon usage bias existed, but the bias was low. The codon usage bias was mainly affected by mutation pressure and natural selection. Natural selection (accounting for 61.79%−76.15%) played a greater role than mutation pressure (accounting for 23.85%−38.21%). In addition, the average codon adaptation ind ex of H9N2 AIV to Homo sapiens ranged from 0.739 to 0.741, suggesting that H9N2 AIV might have adapted to human codon usage patterns.

      Conclusion 

      The study provides a theoretical basis for genetic evolution analysis of H9N2 AIV, codon optimization of existing vaccines and development of new vaccines (codon deoptimization vaccine).

    • [1]
      陈伯伦, 张泽纪, 陈伟斌. 鸡A型禽流感病毒的分离与血清学初步鉴定[J]. 中国家禽, 1997(11): 4-6.
      [2]
      SUN Y, LIU J. H9N2 influenza virus in China: A cause of concern[J]. Protein Cell, 2015, 6(1): 18-25. doi: 10.1007/s13238-014-0111-7
      [3]
      LI G, WANG R, ZHANG C, et al. Genetic and evolutionary analysis of emerging H3N2 canine influenza virus[J]. Emerg Microbes Infect, 2018: 7. doi: 10.1038/s41426-018-0079-0.
      [4]
      胡明达. 禽流感病毒进化与传播规律研究[D]. 北京: 军事科学院, 2018.
      [5]
      NASRULLAH I, BUTT A M, TAHIR S, et al. Genomic analysis  of  codon  usage  shows  influence  of  mutation pressure, natural selection, and host features on Marburg virus evolution[J]. BMC Evol Biol, 2015: 15. doi: 10.1186/s12862-015-0456-4.
      [6]
      BAKER S F, NOGALES A, MARTÍNEZ-SOBRIDO L. Downregulating viral gene expression: Codon usage bias manipulation for the generation of novel influenza A virus vaccines[J]. Future Virol, 2015, 10(6): 715-730. doi: 10.2217/fvl.15.31
      [7]
      PUIGBÒ P, BRAVO I G, GARCIA-VALLVE S. CAIcal: A combined set of tools to assess codon usage adaptation[J]. Biol Direct, 2008: 3. doi: 10.1186/1745-6150-3-38.
      [8]
      NAKAMURA Y, GOJOBORI T, IKEMURA T. Codon usage tabulated from international DNA sequence databases: Status for the year 2000[J]. Nucleic Acids Res, 2000, 28(1): 292. doi: 10.1093/nar/28.1.292
      [9]
      WANG L, XING H, YUAN Y, et al. Genome-wide analysis of codon usage bias in four sequenced cotton species[J]. PLoS One, 2018, 13(3): e0194372. doi: 10.1371/journal.pone.0194372
      [10]
      SHARP P M, LI W H. The codon adaptation index: A measure of directional synonymous codon usage bias, and its potential applications[J]. Nucleic Acids Res, 1987, 15(3): 1281-1295. doi: 10.1093/nar/15.3.1281
      [11]
      CHEN Y, CHEN Y F. Analysis of synonymous codon usage patterns in duck hepatitis A virus: A comparison on the roles of mutual pressure and natural selection[J]. VirusDisease, 2014, 25(3): 285-293. doi: 10.1007/s13337-014-0191-2
      [12]
      CRISTINA J, FAJARDO A, SOÑORA M, et al. A detailed comparative analysis of codon usage bias in Zika virus[J]. Virus Res, 2016, 223: 147-152. doi: 10.1016/j.virusres.2016.06.022
      [13]
      金刚, 王丽萍, 龙凌云, 等. 普通野生稻线粒体蛋白质编码基因密码子使用偏好性的分析[J]. 植物科学学报, 2019, 37(2): 188-197. doi: 10.11913/PSJ.2095-0837.2019.20188
      [14]
      KUMAR N, BERA B C, GREENBAUM B D, et al. Revelation of influencing factors in overall codon usage bias of equine influenza viruses[J]. PLoS One, 2016, 11(4): e0154376. doi: 10.1371/journal.pone.0154376
      [15]
      ZHOU T, GU W J, MA J M, et al. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses[J]. Biosystems, 2005, 81(1): 77-86. doi: 10.1016/j.biosystems.2005.03.002
      [16]
      ANHLAN D, GRUNDMANN N, MAKALOWSKI W, et al. Origin of the 1918 pandemic H1N1 influenza A virus as studied by codon usage patterns and phylogenetic analysis[J]. RNA, 2011, 17(1): 64-73. doi: 10.1261/rna.2395211
      [17]
      BUTT A M, NASRULLAH I, QAMAR R, et al. Evolution of codon usage in Zika virus genomes is host and vector specific[J]. Emerg Microbes Infect, 2016, 5: e107.
      [18]
      YANG X, LUO X, CAI X. Analysis of codon usage pattern  in  Taenia  saginata  based  on  a  transcriptome dataset[J]. Parasite Vector, 2014: 7. doi: 10.1186/s13701-014-0527-1.
      [19]
      SHI S L, JIANG Y R, LIU Y Q, et al. Selective pressure dominates the synonymous codon usage in parvoviridae[J]. Virus Genes, 2013, 46(1): 10-19. doi: 10.1007/s11262-012-0818-6
      [20]
      VICARIO S, MORIYAMA E N, POWELL J R. Codon usage  in  twelve  species  of Drosophila[J]. BMC  Evol Biol, 2007: 7. doi: 10.1186/1471-2148-7-226.
      [21]
      HUANG Y W, LI X D, ZHANG H, et al. Human infection with an avian influenza A (H9N2) virus in the middle region of China[J]. J Med Virol, 2015, 87(10): 1641-1648. doi: 10.1002/jmv.24231
      [22]
      BERA B C, VIRMANI N, KUMAR N, et al. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution[J]. BMC Genomics, 2017: 18. doi: 10.1186/s12864-017-4063-1.
    • Cited by

      Periodical cited type(11)

      1. 李欣宇,叶尔江·拜克吐尔汉,王娟,张新娜,张春雨,赵秀海. 基于非线性混合效应模型的东北红松树高-胸径关系. 北京林业大学学报. 2025(03): 38-48 .
      2. 程雯,武晓昱,叶尔江·拜克吐尔汉,王娟,赵秀海,张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究. 北京林业大学学报. 2024(02): 28-39 .
      3. 王维芳,崔梦琦,邢凯然. 包含哑变量的大兴安岭天然白桦林碳密度模型. 森林工程. 2024(05): 74-81 .
      4. 吕乐乐,王文彬,董灵波. 基于哑变量和分位数回归的兴安落叶松更新幼树的树高-胸径模型. 应用生态学报. 2023(09): 2355-2362 .
      5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 .
      6. 郭卫红,郑庆荣,胡砚秋,陈晓江,李眉红. 山西五台山主要针叶树种树高—胸径曲线模型研究. 湖南林业科技. 2022(06): 72-77 .
      7. 王泳腾,黄治昊,王俊,张童,郎立华,孙国明,崔国发. 濒危植物黄檗的生存压力研究. 北京林业大学学报. 2021(01): 49-57 .
      8. 陈浩,罗扬. 马尾松树高-胸径非线性混合效应模型构建. 森林与环境学报. 2021(04): 439-448 .
      9. 张冬燕,王冬至,李晓,高雨珊,李天宇,陈静. 基于分位数回归的针阔混交林树高与胸径的关系. 浙江农林大学学报. 2020(03): 424-431 .
      10. 邓楠,马丰丰,宋庆安,周满,杨蕊,李典军,彭湃,田育新. 环境梯度对杉木公益纯林分布特征及生长的影响. 湖南林业科技. 2020(04): 8-15 .
      11. 韩辉,袁春良,张学利,宋鸽,安宇宁,孙晓辉. 基于林分生长量的沙地樟子松初植造林密度确定. 辽宁林业科技. 2020(06): 1-9+58 .

      Other cited types(5)

    Catalog

      Article views (18222) PDF downloads (20270) Cited by(16)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return