Citation: | HUANG Weihong, CHEN Yongjie, SUN Yankuo, et al. Codon usage bias of H9N2 avian influenza virus complete genomes and its influence factors[J]. Journal of South China Agricultural University, 2020, 41(3): 15-22. DOI: 10.7671/j.issn.1001-411X.201908020 |
To study codon usage bias of H9N2 avian influenza virus (AIV) complete genomes and its influence factors.
The complete genomes of Chinese epidemic H9N2 AIV strains from 2010 to 2018 were selected. The characteristics of base composition, optimal codons, influence factors of codon usage bias and adaption to the codon usage patterns of the host were analyzed.
AU content was higher than GC content in the whole genomes of H9N2 AIV. Most of the optimal codons ended with A or U, and the average of effective number of codons (ENC) was 52.86, suggesting that codon usage bias existed, but the bias was low. The codon usage bias was mainly affected by mutation pressure and natural selection. Natural selection (accounting for 61.79%−76.15%) played a greater role than mutation pressure (accounting for 23.85%−38.21%). In addition, the average codon adaptation ind ex of H9N2 AIV to Homo sapiens ranged from 0.739 to 0.741, suggesting that H9N2 AIV might have adapted to human codon usage patterns.
The study provides a theoretical basis for genetic evolution analysis of H9N2 AIV, codon optimization of existing vaccines and development of new vaccines (codon deoptimization vaccine).
[1] |
陈伯伦, 张泽纪, 陈伟斌. 鸡A型禽流感病毒的分离与血清学初步鉴定[J]. 中国家禽, 1997(11): 4-6.
|
[2] |
SUN Y, LIU J. H9N2 influenza virus in China: A cause of concern[J]. Protein Cell, 2015, 6(1): 18-25. doi: 10.1007/s13238-014-0111-7
|
[3] |
LI G, WANG R, ZHANG C, et al. Genetic and evolutionary analysis of emerging H3N2 canine influenza virus[J]. Emerg Microbes Infect, 2018: 7. doi: 10.1038/s41426-018-0079-0.
|
[4] |
胡明达. 禽流感病毒进化与传播规律研究[D]. 北京: 军事科学院, 2018.
|
[5] |
NASRULLAH I, BUTT A M, TAHIR S, et al. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution[J]. BMC Evol Biol, 2015: 15. doi: 10.1186/s12862-015-0456-4.
|
[6] |
BAKER S F, NOGALES A, MARTÍNEZ-SOBRIDO L. Downregulating viral gene expression: Codon usage bias manipulation for the generation of novel influenza A virus vaccines[J]. Future Virol, 2015, 10(6): 715-730. doi: 10.2217/fvl.15.31
|
[7] |
PUIGBÒ P, BRAVO I G, GARCIA-VALLVE S. CAIcal: A combined set of tools to assess codon usage adaptation[J]. Biol Direct, 2008: 3. doi: 10.1186/1745-6150-3-38.
|
[8] |
NAKAMURA Y, GOJOBORI T, IKEMURA T. Codon usage tabulated from international DNA sequence databases: Status for the year 2000[J]. Nucleic Acids Res, 2000, 28(1): 292. doi: 10.1093/nar/28.1.292
|
[9] |
WANG L, XING H, YUAN Y, et al. Genome-wide analysis of codon usage bias in four sequenced cotton species[J]. PLoS One, 2018, 13(3): e0194372. doi: 10.1371/journal.pone.0194372
|
[10] |
SHARP P M, LI W H. The codon adaptation index: A measure of directional synonymous codon usage bias, and its potential applications[J]. Nucleic Acids Res, 1987, 15(3): 1281-1295. doi: 10.1093/nar/15.3.1281
|
[11] |
CHEN Y, CHEN Y F. Analysis of synonymous codon usage patterns in duck hepatitis A virus: A comparison on the roles of mutual pressure and natural selection[J]. VirusDisease, 2014, 25(3): 285-293. doi: 10.1007/s13337-014-0191-2
|
[12] |
CRISTINA J, FAJARDO A, SOÑORA M, et al. A detailed comparative analysis of codon usage bias in Zika virus[J]. Virus Res, 2016, 223: 147-152. doi: 10.1016/j.virusres.2016.06.022
|
[13] |
金刚, 王丽萍, 龙凌云, 等. 普通野生稻线粒体蛋白质编码基因密码子使用偏好性的分析[J]. 植物科学学报, 2019, 37(2): 188-197. doi: 10.11913/PSJ.2095-0837.2019.20188
|
[14] |
KUMAR N, BERA B C, GREENBAUM B D, et al. Revelation of influencing factors in overall codon usage bias of equine influenza viruses[J]. PLoS One, 2016, 11(4): e0154376. doi: 10.1371/journal.pone.0154376
|
[15] |
ZHOU T, GU W J, MA J M, et al. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses[J]. Biosystems, 2005, 81(1): 77-86. doi: 10.1016/j.biosystems.2005.03.002
|
[16] |
ANHLAN D, GRUNDMANN N, MAKALOWSKI W, et al. Origin of the 1918 pandemic H1N1 influenza A virus as studied by codon usage patterns and phylogenetic analysis[J]. RNA, 2011, 17(1): 64-73. doi: 10.1261/rna.2395211
|
[17] |
BUTT A M, NASRULLAH I, QAMAR R, et al. Evolution of codon usage in Zika virus genomes is host and vector specific[J]. Emerg Microbes Infect, 2016, 5: e107.
|
[18] |
YANG X, LUO X, CAI X. Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset[J]. Parasite Vector, 2014: 7. doi: 10.1186/s13701-014-0527-1.
|
[19] |
SHI S L, JIANG Y R, LIU Y Q, et al. Selective pressure dominates the synonymous codon usage in parvoviridae[J]. Virus Genes, 2013, 46(1): 10-19. doi: 10.1007/s11262-012-0818-6
|
[20] |
VICARIO S, MORIYAMA E N, POWELL J R. Codon usage in twelve species of Drosophila[J]. BMC Evol Biol, 2007: 7. doi: 10.1186/1471-2148-7-226.
|
[21] |
HUANG Y W, LI X D, ZHANG H, et al. Human infection with an avian influenza A (H9N2) virus in the middle region of China[J]. J Med Virol, 2015, 87(10): 1641-1648. doi: 10.1002/jmv.24231
|
[22] |
BERA B C, VIRMANI N, KUMAR N, et al. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution[J]. BMC Genomics, 2017: 18. doi: 10.1186/s12864-017-4063-1.
|