• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
BAI Xue, NONG Mengling, LONG Pengyu, et al. Relationship between soil methane emission flux and active organic carbon content in sugarcane field under drip fertigation[J]. Journal of South China Agricultural University, 2020, 41(3): 31-37. DOI: 10.7671/j.issn.1001-411X.201907020
Citation: BAI Xue, NONG Mengling, LONG Pengyu, et al. Relationship between soil methane emission flux and active organic carbon content in sugarcane field under drip fertigation[J]. Journal of South China Agricultural University, 2020, 41(3): 31-37. DOI: 10.7671/j.issn.1001-411X.201907020

Relationship between soil methane emission flux and active organic carbon content in sugarcane field under drip fertigation

More Information
  • Received Date: July 13, 2019
  • Available Online: May 17, 2023
  • Objective 

    To study the effects of drip fertigation on soil active organic carbon content and methane (CH4) emission flux in sugarcane field, and investigate the relationship between soil methane emission flux and soil active organic carbon content.

    Method 

    The field experiment with different irrigation and fertilization treatments under drip irrigation was conducted in Nanning Irrigation Experimental Station from March to December in 2018. Four fertilization levels were designed: Conventional fertilization (F100, N 250 kg·hm−2, P2O5 150 kg·hm−2, K2O 200 kg·hm−2), incremental fertilization 1 (F110, 10% increase based on F100), incremental fertilization 2 (F120, 20% increase on the basis of F100), and reducing fertilization (F90, 10% reduction based on F100). Two drip irrigation levels were set: W180 (180 m3·hm−2) and W300 (300 m3·hm−2). Soil CH4 emission flux and active organic carbon contents at different growth stages of sugarcane were measured using conventional method, and the relationships between soil CH4 emission flux and active organic carbon contents in sugarcane field were analyzed by Pearson method.

    Result 

    At tillering stage, W300F120 treatment increased soil soluble organic carbon (DOC) content by 156% compared with W300F100 but had lower CH4 emission flux in soil than the other treatments. At maturing stage, W300F120 treatment increased soil DOC content and microbial biomass carbon (MBC) by 114% and 49.6% compared with W300F100, respectively. CH4 emission flux in sugarcane field was only positively correlated with soil DOC content, with the correlation coefficient of 0.38.

    Conclusion 

    Soil DOC content significantly affects CH4 emission flux in sugarcane field. W300F120 treatment can increase soil soluble organic carbon content in sugarcane field at tillering and maturing stages, and reduce soil CH4 emission in sugarcane field at tillering stage.

  • [1]
    罗梅, 田冬, 高明, 等. 紫色土壤有机碳活性组分对生物炭施用量的响应[J]. 环境科学, 2018, 39(9): 4327-4337.
    [2]
    SAVIOZZI A, LEVI-MINZI R, CARDELLI R, et al. A comparison of soil quality in adjacent cultivated, forest and native grassland soils[J]. Plant Soil, 2001, 233(2): 251-259. doi: 10.1023/A:1010526209076
    [3]
    沈宏, 曹志洪, 胡正义. 土壤活性碳的表征及其生态意义[J]. 生态学杂志, 1999, 18(3): 32-38. doi: 10.3321/j.issn:1000-4890.1999.03.008
    [4]
    LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant Soil, 1993, 155/156(1): 399-402. doi: 10.1007/BF00025067
    [5]
    张哲, 王邵军, 李霁航, 等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应[J]. 生态学报, 2019, 39(17): 6257-6263.
    [6]
    PURI G, ASHMAN M R. Relationship between soil microbial biomass and gross N mineralisation[J]. Soil Biol Biochem, 1998, 30(2): 251-256. doi: 10.1016/S0038-0717(97)00117-X
    [7]
    王瑞. 秸秆添加对土壤温室气体排放和溶解性有机碳DOC组分的影响[D]. 武汉: 华中农业大学, 2018.
    [8]
    刘霞娇, 段亚峰, 叶莹莹, 等. 耕作扰动对喀斯特土壤可溶性有机质及其组分迁移淋失的影响[J]. 生态学报, 2018, 38(19): 6981-6991.
    [9]
    汪景宽, 李丛, 于树, 等. 不同肥力棕壤溶解性有机碳、氮生物降解特性[J]. 生态学报, 2008, 28(12): 6165-6171. doi: 10.3321/j.issn:1000-0933.2008.12.046
    [10]
    寇永珍. 草海高原湿地湖滨带甲烷产生与氧化潜力研究[D]. 贵阳: 贵州师范大学, 2015.
    [11]
    SMITH P, FANG C M. Carbon cycle:A warm response by soils[J]. Nature, 2010, 464(7288): 499-500.
    [12]
    倪进治, 徐建民, 谢正苗. 有机肥料施用后潮土中活性有机质组分的动态变化[J]. 农业环境科学学报, 2003, 22(4): 416-419. doi: 10.3321/j.issn:1672-2043.2003.04.008
    [13]
    YAGI K, MINAMI K. Effect of organic matter application on methane emission from some Japanese paddy fields[J]. Soil Sci Plant Nutr, 1990, 36(4): 599-610.
    [14]
    BLAGODATSKAYA E, YUYUKINA T, BLAGODATSKY S, et al. Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects[J]. Soil Biol Biochem, 2011, 43(4): 778-786. doi: 10.1016/j.soilbio.2010.12.011
    [15]
    王楷, 李伏生, 方泽涛, 等. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5): 1012-1020. doi: 10.11654/jaes.2016-1581
    [16]
    WIESMEIER M, HÜBNER R, SPÖRLEIN P, et al. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation[J]. Glob Change Biol, 2014, 20(2): 653-665. doi: 10.1111/gcb.12384
    [17]
    魏长宾, 刘胜辉, 何应对, 等. 甘蔗滴灌施肥效果研究初报[J]. 广东农业科学, 2008, 35(7): 60-61. doi: 10.3969/j.issn.1004-874X.2008.07.023
    [18]
    齐玉春, 郭树芳, 董云社, 等. 灌溉对农田温室效应贡献及土壤碳储量影响研究进展[J]. 中国农业科学, 2014, 47(9): 1764-1773. doi: 10.3864/j.issn.0578-1752.2014.09.011
    [19]
    SINGH A, GULATI I J, CHOPRA R, et al. Effect of drip-fertigation with organic manures on soil properties and tomato (Lycopersicon esculentum Mill.) yield under arid condition[J]. Ann Biol, 2014, 30(2): 345-359.
    [20]
    刘岳燕. 水分条件与水稻土壤微生物生物量、活性及多样性的关系研究[D]. 杭州: 浙江大学, 2009.
    [21]
    俞慎, 李振高. 薰蒸提取法测定土壤微生物量研究进展[J]. 土壤学进展, 1994, 22(6): 42-50.
    [22]
    王莹, 阮宏华, 黄亮亮, 等. 围湖造田不同土地利用方式土壤有机碳和易氧化碳[J]. 生态环境学报, 2010, 19(4): 913-918. doi: 10.3969/j.issn.1674-5906.2010.04.031
    [23]
    刘涛泽, 刘丛强, 张伟, 等. 喀斯特地区坡地土壤可溶性有机碳的分布特征[J]. 中国环境科学, 2009, 29(3): 248-253. doi: 10.3321/j.issn:1000-6923.2009.03.005
    [24]
    董艳芳, 黄景, 李伏生, 等. 不同灌溉模式和施氮处理下稻田CH4和N2O排放[J]. 植物营养与肥料学报, 2017, 23(3): 578-588. doi: 10.11674/zwyf.16437
    [25]
    汤桂容, 周旋, 田昌, 等. 有机无机氮肥配施对菜地土壤二氧化碳和甲烷排放的影响[J]. 中国土壤与肥料, 2019(3): 29-35.
    [26]
    李玉娥, 林而达. 土壤甲烷吸收汇研究进展[J]. 地球科学进展, 1999, 14(6): 613-618. doi: 10.3321/j.issn:1001-8166.1999.06.015
    [27]
    道力格亚. 长期不同施肥处理下旱地CO2和CH4排放特征的研究[D]. 杨凌: 西北农林科技大学, 2018.
    [28]
    石生伟, 李玉娥, 刘运通, 等. 中国稻田CH4和N2O排放及减排整合分析[J]. 中国农业科学, 2010, 43(14): 2923-2936. doi: 10.3864/j.issn.0578-1752.2010.14.011
    [29]
    焦燕, 黄耀, 宗良纲, 等. 氮肥水平对不同土壤CH4排放的影响[J]. 环境科学, 2005, 26(3): 21-24. doi: 10.3321/j.issn:0250-3301.2005.03.005
    [30]
    BODELIER P L E, HAHN A P, ARTH I R, et al. Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice[J]. Biogeochemistry, 2000, 51(3): 225-257. doi: 10.1023/A:1006438802362
    [31]
    吴家梅, 纪雄辉, 霍莲杰, 等. 稻田土壤氧化态有机碳组分变化及其与甲烷排放的关联性[J]. 生态学报, 2013, 33(15): 4599-4607.
    [32]
    MASTO R E, CHHONKAR P K, SINGH D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol[J]. Soil Biol Biochem, 2006, 38(7): 1577-1582. doi: 10.1016/j.soilbio.2005.11.012
    [33]
    杨文元, 董博, 赵记军, 等. 追施不同量尿素下麦后复种油菜对耕层土壤有机碳及微生物量碳氮的影响[J]. 水土保持通报, 2017, 37(3): 59-62.
    [34]
    李睿. DOM对紫色土中养分有效性的影响[D]. 重庆: 西南农业大学, 2005.
    [35]
    孙冬晔. 施肥措施对红壤性水稻土可溶性有机碳组成及生物有效性的影响[D]. 南京: 南京农业大学, 2014.
    [36]
    莫永亮, 胡荣桂, 赵劲松, 等. 冬水田转稻麦轮作对小麦生长季温室气体排放的影响[J]. 环境科学学报, 2014, 34(10): 2675-2683.
  • Cited by

    Periodical cited type(4)

    1. 周文灵,陈迪文,吴启华,方界群,敖俊华. 耕作措施对宿根甘蔗产量、碳排放及经济效益的影响. 中国生态农业学报(中英文). 2024(09): 1481-1491 .
    2. 王林林,徐珂,李正鹏,严清彪,胡发龙,尚琰隽,韩梅. 不同类型绿肥混播对土壤真菌群落结构和理化性质的影响. 江苏农业学报. 2024(12): 2273-2282 .
    3. 郑志杰,刘仁燕,陈宁,熊兴军,余辉亮,鄢紫薇,徐晗,胡荣桂,林杉. 三峡库区2种土地利用方式下土壤盐基离子及碳氮含量对氮添加的响应. 水土保持学报. 2023(01): 197-203 .
    4. 赵月琴,马秀静,赵琬婧,张治军,孙晓新. 三江平原垦殖湿地恢复对温室气体排放的影响. 应用生态学报. 2023(08): 2142-2152 .

    Other cited types(10)

Catalog

    Article views (19118) PDF downloads (38328) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return