GUO Mengqing, YANG Ying, XU Ye, et al. Carbon storage and distribution characteristics of Camellia gauchowensis plantation[J]. Journal of South China Agricultural University, 2020, 41(3): 86-92. DOI: 10.7671/j.issn.1001-411X.201907018
    Citation: GUO Mengqing, YANG Ying, XU Ye, et al. Carbon storage and distribution characteristics of Camellia gauchowensis plantation[J]. Journal of South China Agricultural University, 2020, 41(3): 86-92. DOI: 10.7671/j.issn.1001-411X.201907018

    Carbon storage and distribution characteristics of Camellia gauchowensis plantation

    More Information
    • Received Date: July 10, 2019
    • Available Online: May 17, 2023
    • Objective 

      To investigate carbon storage and distribution characteristics of Camellia gauchowensis plantation, estimate and evaluate the effect of carbon sequestration.

      Method 

      Based on the distribution characteristics of basic diameter class in the sample plot, 2 to 3 sample trees were selected in each diameter class. The biomass and carbon content of various organs (leaves, trunks, branches, roots, fruits and flower buds) were measured and their biomass models were established. According to “S” shape in standard plot, eight sampling points were randomly selected to collect soil samples from 0−20, 20−40, 40−60 and 60−100 cm along the soil profile. The bulk density and carbon content of soil samples were determined and the carbon storage was calculated.

      Result 

      The order of biomass allocation ratio of the organs of middle-aged C. gauchowensis plantation was trunks> roots > leaves > branches > fruits > flower buds. All the biomass of various organs increased with the basal diameter. The total biomass of test stand was 26.902 t·hm−2. The average carbon content of the tree was 483.45 g·kg−1. The carbon contents were different from various organs in the same diameter class, with fruits being the highest. In the soil layers of 100 cm depth in C. gauchowensis forest land, the soil carbon content decreased with the increase of soil depth, with 0−20 cm soil layer being the highest (26.550 g·kg−1). The total carbon storage of C. gauchowensis plantation was 144.538 t·hm−2, which was 12.857 t·hm−2 (accounting for 8.90%) and 131.681 t·hm−2 (accounting for 91.10%) for plant and soil, respectively. According to the authorized data of China biodiversity national condition report, the carbon price is 260.90 CNY per ton, so the economic benefit of the carbon of C. gauchowensi plantation is about 38 000 CNY per hectare.

      Conclusion 

      The carbon storage of C. gauchowensis plantation is higher than that of the average level of non-timber forests in Guangdong, the forest soil carbon storage is higher than the average level in Guangdong, and the total carbon storage of stand is higher than that of forest ecosystem in the Pearl River Delta. C. gauchowensi not only has a good production benefit, but also has a very broad prospect of carbon sequestration.

    • [1]
      杨颖, 张鹏, 奚如春, 等. 高州油茶不同产区果实含油率及脂肪酸组成的变异特征[J]. 经济林研究, 2018, 36(4): 104-108.
      [2]
      戚嘉敏, 张鹏, 奚如春. 油茶树体氮磷钾养分的年动态变化[J]. 经济林研究, 2017, 35(3): 121-126.
      [3]
      方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497-508.
      [4]
      RODRÍGUEZ-VEIGA P, QUEGAN S, CARREIRAS J, et al. Forest biomass retrieval approaches from earth observation in different biomes[J]. Int J Appl Earth Obs Geoinformation, 2019, 77: 53-68. doi: 10.1016/j.jag.2018.12.008
      [5]
      唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(S1): 19-27.
      [6]
      DANGAL S P, DAS A K, PAUDEL S K. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal[J]. J Environ Manag, 2017, 196: 511-517. doi: 10.1016/j.jenvman.2017.03.056
      [7]
      JONKER J G G, VAN DER HILST F, MARKEWITZ D, et al. Carbon balance and economic performance of pine plantations for bioenergy production in the Southeastern United States[J]. Biomass Bioenergy, 2018, 117: 44-55. doi: 10.1016/j.biombioe.2018.06.017
      [8]
      谭云峰, 张西西, 陈新媛. 不同经营措施的油茶林生物量和生产力的初步研究[J]. 农业现代化研究, 1982, 3(3): 31-36.
      [9]
      谌小勇, 彭元英, 郭照光, 等. 油茶林分生物量及生产力的研究[J]. 经济林研究, 1996, 14(1): 4-6.
      [10]
      付达夫, 王永安. 湖南油茶林不同经营措施对生物产量的影响[J]. 林业调查规划, 2004, 29(1): 21-23. doi: 10.3969/j.issn.1671-3168.2004.01.006
      [11]
      奚如春, 邓小梅. 我国油茶产业化发展中的现状、要素及其优化[J]. 经济林研究, 2005, 23(1): 83-87. doi: 10.3969/j.issn.1003-8981.2005.01.025
      [12]
      唐健, 李娜, 欧阳洁英, 等. 油茶苗期生物量积累及营养分配规律研究[J]. 南方农业学报, 2011, 42(8): 964-967. doi: 10.3969/j.issn.2095-1191.2011.08.034
      [13]
      宋贤冲, 唐健, 覃其云, 等. 油茶成熟林生物量积累及营养分配规律[J]. 南方农业学报, 2014, 45(2): 255-258. doi: 10.3969/j:issn.2095-1191.2014.2.255
      [14]
      高越. 基于数字图像处理的油茶生物量估测模型研究[D]. 长沙: 湖南农业大学, 2016.
      [15]
      汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13): 4462-4472.
      [16]
      鲁如坤.土壤农业化学分析方法[M].北京: 中国农业科技出版社,2000:123-125
      [17]
      程先富, 史学正, 于东升, 等. 江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J]. 应用与环境生物学报, 2004, 10(1): 64-67. doi: 10.3321/j.issn:1006-687X.2004.01.015
      [18]
      CUI Z Y, DENG X M, XI R C, et al. Organic carbon storage and its allocation characteristics in the oil tree Camellia oleifera ecosystem in Longchuan, Guangdong, China[J]. Fresenius Environ Bull, 2016, 25(6): 2166-2173.
      [19]
      杨众养, 陈宗铸, 陈小花, 等. 海南岛北部3种经济林树种的生物量、碳储量及其分配特征[J]. 经济林研究, 2018, 36(3): 62-68.
      [20]
      王炳焱. 伏牛山北坡栓皮栎天然次生林不同生长阶段生物量和碳储量研究[D]. 郑州: 河南农业大学, 2015.
      [21]
      彭映赫, 许彦明, 王瑞, 等. 不同林龄油茶林土壤有机碳和氮储量特征[J]. 湖南林业科技, 2018, 45(1): 65-70. doi: 10.3969/j.issn.1003-5710.2018.01.013
      [22]
      王璟睿, 仵宏基, 孙昕, 等. 广东省森林碳储量与动态变化[J]. 东北林业大学学报, 2016, 44(1): 18-22. doi: 10.3969/j.issn.1000-5382.2016.01.004
      [23]
      文雅, 黄宁生, 匡耀求, 等. 广东省山区土壤有机碳密度特征及空间格局[J]. 应用基础与工程科学学报, 2010, 18(S1): 10-18.
      [24]
      张修玉, 许振成, 曾凡棠, 等. 珠江三角洲森林生态系统碳密度分配及其储量动态特征[J]. 中国环境科学, 2011, 31(S1): 69-77.
      [25]
      谢元贵, 廖小锋, 赵晓朋, 等. 喀斯特峰丛洼地不同适生植物配置模式固碳能力及效益评价[J]. 广东农业科学, 2015, 42(20): 134-139. doi: 10.3969/j.issn.1004-874X.2015.20.026
    • Cited by

      Periodical cited type(17)

      1. 侯天元,汤冬梅,张丽萍,周巧红,吴振斌,武俊梅. 抗生素对人工湿地处理水产养殖尾水的影响及其缓解途径. 水生生物学报. 2025(04): 61-71 .
      2. 黄丽,高磊,吴松,郝其睿,李晨辉,汤施展,白淑艳,陈中祥,杜宁宁,覃东立,王鹏. 地西泮在模拟养殖环境中的含量变化及累积特征. 南方水产科学. 2024(02): 38-47 .
      3. 陈进,余忠花,王亚娟,胡闪闪,高礼,陶红. 不同植物对多西环素污染的胁迫响应及其修复潜力研究. 环境工程. 2024(04): 250-257 .
      4. 杨佩汶,林毅,林华,肖玲,甘淑萍,王义安. 不同构型人工湿地-微生物燃料电池对废水中对氯苯酚的净化效果及产电性能的影响. 环境工程学报. 2023(02): 507-516 .
      5. 史沉鱼,黄港平. 土霉素胁迫对黄瓜幼苗生理特性的影响. 北方园艺. 2023(06): 1-11 .
      6. 秦玉春,邹涛,张璇,王永强,国晓春,刘晓晖,卢少勇. 氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应. 环境工程技术学报. 2023(03): 1079-1087 .
      7. 袁孝康,付绿倩,陈华林,周江敏,刘欣聪,邓仕槐. 水产养殖中抗生素污染治理研究进展. 环境监测管理与技术. 2023(04): 1-6 .
      8. 荣渝虹,孙仕仙,张发明,李良,李荣彪,罗超,郑毅. 香根草对水体中磺胺嘧啶单一及联合污染的去除动态研究. 西南林业大学学报(自然科学). 2023(06): 79-90 .
      9. 黄伟杰,刘学智,唐红亮,汪义杰,陈军. 植物修复在抗生素污染治理中的应用研究进展. 生态科学. 2022(01): 222-229 .
      10. 付雨,剧泽佳,陈慧,赵鑫宇,宋圆梦,王广志,张璐璐,崔建升. 白洋淀喹诺酮类抗生素在底栖动物中的生物富集特征. 中国环境科学. 2022(02): 878-888 .
      11. 胡劲召,张璇,王永强,徐佳敏,卢洪斌,叶长兵,刘晓晖,陈中兵,卢少勇. 磺胺甲恶唑胁迫下人工湿地植物与根际微生物的响应. 环境工程技术学报. 2022(05): 1474-1483 .
      12. 周海东,黄丽萍,陈晓萌,李丹妍,李昕,崔锦裕. 人工生态系统对城市河流中抗生素和ARGs的去除. 环境科学. 2021(02): 850-859 .
      13. 刘昭君,林华,王义安,覃辉,Kong CHHUON. 磷肥种类对李氏禾富集铜、铬的影响及其生理响应. 生态环境学报. 2021(02): 412-419 .
      14. 付雨,剧泽佳,付耀萱,田沛龙,张璐璐,赵鑫宇,陈慧,崔建升. 白洋淀优势水生植物中喹诺酮类抗生素的生物富集特征及其与环境因子相关性研究. 环境科学学报. 2021(09): 3620-3630 .
      15. 谌和平,邹逸凡,张露荷,纪荣平. 人工湿地基质及其生物膜对生活污水中污染物去除效果的研究. 广东化工. 2021(22): 13-15 .
      16. 杜实之. 环境中抗生素的残留、健康风险与治理技术综述. 环境科学与技术. 2021(09): 37-48 .
      17. 李梦月,张某,鲁武峰,兰明先,易璟,李成学,吴国星. 紫茎泽兰对四环素的吸收特性. 生物安全学报. 2020(04): 302-305 .

      Other cited types(15)

    Catalog

      Article views (32244) PDF downloads (38033) Cited by(32)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return